一元二次不等式教案(精選3篇)
一元二次不等式教案 篇1
教學(xué)內(nèi)容
3.2一元二次不等式及其解法
三維目標(biāo)
一、知識(shí)與技能
1.鞏固一元二次不等式的解法和解法與二次函數(shù)的關(guān)系、一元二次不等式解法的步驟、解法與二次函數(shù)的關(guān)系兩者之間的區(qū)別與聯(lián)系;
2.能熟練地將分式不等式轉(zhuǎn)化為整式不等式(組),正確地求出分式不等式的解集;
3.會(huì)用列表法,進(jìn)一步用數(shù)軸標(biāo)根法求解分式及高次不等式;
4.會(huì)利用一元二次不等式,對(duì)給定的與一元二次不等式有關(guān)的問題,嘗試用一元二次不等式解法與二次函數(shù)的有關(guān)知識(shí)解題.
二、過程與方法
1.采用探究法,按照思考、交流、實(shí)驗(yàn)、觀察、分析得出結(jié)論的方法進(jìn)行啟發(fā)式教學(xué);
2.發(fā)揮學(xué)生的主體作用,作好探究性教學(xué);
3.理論聯(lián)系實(shí)際,激發(fā)學(xué)生的學(xué)習(xí)積極性.
三、情感態(tài)度與價(jià)值觀
1.進(jìn)一步提高學(xué)生的運(yùn)算能力和思維能力;
2.培養(yǎng)學(xué)生分析問題和解決問題的能力;
3.強(qiáng)化學(xué)生應(yīng)用轉(zhuǎn)化的數(shù)學(xué)思想和分類討論的數(shù)學(xué)思想.
教學(xué)重點(diǎn)
1.從實(shí)際問題中抽象出一元二次不等式模型.
2.圍繞一元二次不等式的解法展開,突出體現(xiàn)數(shù)形結(jié)合的思想.
教學(xué)難點(diǎn)
1.深入理解二次函數(shù)、一元二次方程與一元二次不等式的關(guān)系.
教學(xué)方法
啟發(fā)、探究式教學(xué)
教學(xué)過程
復(fù)習(xí)引入
師:上一節(jié)課我們通過具體的問題情景,體會(huì)到現(xiàn)實(shí)世界存在大量的不等量關(guān)系,并且研究了用不等式或不等式組來表示實(shí)際問題中的不等關(guān)系;仡櫹碌缺葦(shù)列的性質(zhì)。
生:略
師:某同學(xué)要把自己的計(jì)算機(jī)接入因特網(wǎng),現(xiàn)有兩種ISP公司可供選擇,公司A每小時(shí)收費(fèi)1.5元(不足1小時(shí)按1小時(shí)計(jì)算),公司B的收費(fèi)原則是第1小時(shí)內(nèi)(含恰好1小時(shí),下同)收費(fèi)1.7元,第2小時(shí)內(nèi)收費(fèi)1.6元以后每小時(shí)減少0.1元(若用戶一次上網(wǎng)時(shí)間超過17小時(shí),按17小時(shí)計(jì)算)那么,一次上網(wǎng)在多少時(shí)間以內(nèi)能夠保證選擇公司A的上網(wǎng)費(fèi)用小于等于選擇公司B所需費(fèi)用。
學(xué)生自己討論
點(diǎn)題,板書課題
新課學(xué)習(xí)
1.一元二次不等式
只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式。
2.三個(gè)“二次”之間的關(guān)系及一元二次不等式的解法
師在前面我們已經(jīng)學(xué)習(xí)過一元二次不等的解法,發(fā)現(xiàn)一元二次方程及對(duì)應(yīng)的二次函數(shù)有關(guān)系,那么同學(xué)們課本打開到p77填表格。
生略
師學(xué)生討論歸納出解一元二次不等式的步驟
一看:看二次項(xiàng)系數(shù)的正負(fù),并且變形為
二算:,判斷正負(fù),有根則求并畫出對(duì)應(yīng)的函數(shù)圖象
三寫:寫出原不等式的解集
練習(xí)反饋
。劾}剖析]
例1解下列不等式
。1)(2)
(3)(4)
。5)(6)
課本80頁(yè)練習(xí)
例2已知不等式的解集為試解不等式
變式:
已知
課堂
小結(jié)
1.三個(gè)“二次的關(guān)系”
2.解二次不等式的步驟
作業(yè)布置
課本第80頁(yè)習(xí)題3.2A組第1.2.4題B組1
練習(xí)調(diào)配
設(shè)計(jì)42頁(yè)全做,43頁(yè)例1例2隨堂練習(xí)2.3,4,5測(cè)評(píng)1、3、4、5、6、7、8、
一元二次不等式教案 篇2
解一元二次不等式化為標(biāo)準(zhǔn)型。判斷△的符號(hào)。若△<0,則不等式是在R上恒成立或恒不成立。
若△>0,則求出兩根,在數(shù)軸上標(biāo)出,每個(gè)根上畫一條豎線,再?gòu)挠业阶笙嚅g標(biāo)正負(fù)號(hào),不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。
2.解簡(jiǎn)單一元高次不等式
a.化為標(biāo)準(zhǔn)型。
b.將不等式分解成若干個(gè)因式的積。
c.求出各個(gè)根,在數(shù)軸上標(biāo)出,每個(gè)根上畫一條豎線,再?gòu)挠业阶笙嚅g標(biāo)正負(fù)號(hào),不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。
3.解分式不等式的解
a.化為標(biāo)準(zhǔn)型。
b.可將分式化為整式,將整式分解成若干個(gè)因式的積。
c.求出各個(gè)根,在數(shù)軸上標(biāo)出,每個(gè)根上畫一條豎線,再?gòu)挠业阶笙嚅g標(biāo)正負(fù)號(hào),不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。(如果不等式是非嚴(yán)格不等式,則要注意分式分母不等于0。)
4.解含參數(shù)的一元二次不等式
a.對(duì)二次項(xiàng)系數(shù)a的討論。
若二次項(xiàng)系數(shù)a中含有參數(shù),則須對(duì)a的符號(hào)進(jìn)行分類討論。分為a>0,a=0,a<0。
b.對(duì)判別式△的討論
若判別式△中含有參數(shù),則須對(duì)△的符號(hào)進(jìn)行分類討論。分為△>0,△=0,△<0。
c.對(duì)根大小的討論
若不等式對(duì)應(yīng)的方程的根x1、x2中含有參數(shù),則須對(duì)x1、x2的大小進(jìn)行分類討論。分為x1>x2,x1=x2,x1<x2。
5.一元二次方程的根的分布問題
a.將方程化為標(biāo)準(zhǔn)型。(a的符號(hào))
b.畫圖觀察,若有區(qū)間端點(diǎn)對(duì)應(yīng)的函數(shù)值小于0,則只須討論區(qū)間端點(diǎn)的函數(shù)值。
若沒有區(qū)間端點(diǎn)對(duì)應(yīng)的函數(shù)值小于0,則須討論區(qū)間端點(diǎn)的函數(shù)值、△、軸。
6.一元二次不等式的應(yīng)用
、旁赗上恒成立問題(恒不成立問題相反,在某區(qū)間恒成立可轉(zhuǎn)化為實(shí)根分布問題)
a.對(duì)二次項(xiàng)系數(shù)a的符號(hào)進(jìn)行討論,分為a=0與a≠0。
b.a=0時(shí),把a(bǔ)=0帶入,檢驗(yàn)不等式是否成立,判斷a=0是否屬于不等式解集。
a≠0時(shí),則轉(zhuǎn)化為二次函數(shù)圖像全在x軸上方或下方。
若f(x)>0,則要求a>0,△<0。
若f(x)<0,則要求a<0,△<0。
、铺厥忸}型:已知一不等式的解集(含有字母),求另一不等式的解集(與原不等式系數(shù)大小相同,位置不同)。a.寫出原不等式對(duì)應(yīng)的方程,由韋達(dá)定理得出解集字母與方程系數(shù)間的關(guān)系。
b.寫出變換后不等式對(duì)應(yīng)的方程,由由韋達(dá)定理得出解集字母與方程系數(shù)間的關(guān)系。
c.將a中得到的關(guān)系變化后帶入b的關(guān)系中,得到變換后方程的兩根。
d.判斷兩根的大小,變換后不等式二次項(xiàng)的系數(shù),從而寫出所求解集。
一元二次不等式教案 篇3
一、教學(xué)目標(biāo)
【知識(shí)與技能】
掌握求解一元二次不等式的簡(jiǎn)單方法,能正確求解一元二次不等式的解集。
【過程與方法】
在探究一元二次不等式的解法的過程中,提升邏輯推理能力。
【情感、態(tài)度與價(jià)值觀】
感受數(shù)學(xué)知識(shí)的前后聯(lián)系,提升學(xué)習(xí)數(shù)學(xué)的熱情。
二、教學(xué)重難點(diǎn)
【重點(diǎn)】一元二次不等式的解法。
【難點(diǎn)】一元二次不等式的解法的探究過程。
三、教學(xué)過程
(一)導(dǎo)入新課
回顧一元二次不等式的一般形式,組織學(xué)生舉例一些簡(jiǎn)單的一元二次不等式。
提問:如何求解?引出課題。
(二)講解新知
結(jié)合課前回顧的一元二次不等式的一般形式,對(duì)比之前所學(xué)內(nèi)容,引導(dǎo)學(xué)生發(fā)現(xiàn)其與一元二次方程和二次函數(shù)的共同特點(diǎn)。