《有理數(shù)的除法》教案(精選14篇)
《有理數(shù)的除法》教案 篇1
一、知識(shí)與技能
掌握有理數(shù)除法法則,會(huì)進(jìn)行有理數(shù)的除法運(yùn)算以及分?jǐn)?shù)的化簡(jiǎn)。
二、過程與方法
通過學(xué)習(xí)有理數(shù)除法法則,體會(huì)轉(zhuǎn)化思想,會(huì)將乘除混合運(yùn)算統(tǒng)一為乘法運(yùn)算。
三、情感態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生勇于探索積極思考的良好學(xué)習(xí)習(xí)慣。
四、教學(xué)重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):正確應(yīng)用法則進(jìn)行有理數(shù)的除法運(yùn)算。
2.難點(diǎn):靈活運(yùn)用有理數(shù)除法的兩種法則。
3.關(guān)鍵:會(huì)將有理數(shù)的除法轉(zhuǎn)化為乘法。
五、教學(xué)過程,課堂引入
1.小學(xué)里,除法的意義是什么?它與乘法有什么關(guān)系?
已知兩數(shù)的積與一個(gè)因數(shù),求另一個(gè)因數(shù)。用除法,乘法與除法互為逆運(yùn)算除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)。
2.求下列各數(shù)的倒數(shù):
(1)-; (2)-0.125; (3)-1.
六、新授
引入負(fù)數(shù)后,如何計(jì)算有理數(shù)的除法呢?
例如8(-4)。
根據(jù)除法意義,這就是要求一個(gè)數(shù),使它與-4相乘得8.
因?yàn)?(-2)(-4)=8
所以 8(-4)=-2 ①
另外,我們知道,8(-)=-2 ②
由①、②得 8(-4)=8(-) ③
、凼奖砻,一個(gè)數(shù)除以-4可以轉(zhuǎn)化為乘以-來進(jìn)行,即一個(gè)數(shù)除以-4,等于乘以-4的倒數(shù)-.
探索:換其他數(shù)的除法進(jìn)行類似討論,是否仍有除以a(a0)可以轉(zhuǎn)化為乘以呢?[例如(-10)(-4)]
從而得出有理數(shù)除法法則:
除以一個(gè)不等于0的數(shù),等于乘以這個(gè)數(shù)的倒數(shù)。
這個(gè)法則也可以表示成:
《有理數(shù)的除法》教案 篇2
一、教學(xué)目標(biāo)
知識(shí)與技能:
、偈箤W(xué)生在了解乘法的基礎(chǔ)上,掌握有理數(shù)乘法法則并初步掌握有理數(shù)乘法法則的合理性。
、跁(huì)進(jìn)行有理數(shù)乘法運(yùn)算。
、哿私庥欣頂(shù)的倒數(shù)定義,會(huì)求一個(gè)數(shù)的倒數(shù)。
過程與方法:
、俳(jīng)歷探索有理數(shù)乘法法則,發(fā)展,觀察,歸納,猜想,驗(yàn)證的能力以及培養(yǎng)學(xué)生的.語言表達(dá)能力。
②提高學(xué)生的運(yùn)算能力
情感與態(tài)度:通過合作學(xué)習(xí)調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高學(xué)生認(rèn)識(shí)世界的水平。
二、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):依據(jù)有理數(shù)的乘法法則,熟練進(jìn)行有理數(shù)的乘法運(yùn)算;
難點(diǎn):有理數(shù)乘法中的符號(hào)法則.
三、教學(xué)過程
(一)創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,復(fù)習(xí)舊知,導(dǎo)入新課
前面我們學(xué)習(xí)了有理數(shù)的加減法,接下來就應(yīng)該學(xué)習(xí)有理數(shù)的乘除法.同學(xué)們先看下面的問題:甲水庫的水位每天升高3㎝,乙水庫的水位每天下降3㎝。4天后,甲、乙水庫各自水位的總變化量是多少?
如果用正號(hào)表示水位的上升、用負(fù)號(hào)表示水位的下降。那么,4天后,甲水庫水位的總變化量是:3+3+3=3×4=12㎝
乙水庫水位的總變化量是:(-3)+(-3)+(-3)+(-3)=(-3)×4=-12㎝引出課題:有理數(shù)的乘法
(二)學(xué)生探索新知,歸納法則
學(xué)生分為四個(gè)小組活動(dòng),進(jìn)行乘法法則的探索
設(shè)蝸,F(xiàn)在的位置為點(diǎn)O,若它一直都是沿直線爬行,而且每分鐘爬行2cm,問:
(1)向右爬行,3分鐘后的位置?
(2)向左爬行,3分鐘后的位置?
(3)向右爬行,3分鐘前的位置?
(4)向左爬行,3分鐘前的位置?
(學(xué)生思考后回答)要確定蝸牛的位置需要知道:距離和方向。
為了區(qū)分方向:我們規(guī)定向右為正,向左為負(fù);為區(qū)分時(shí)間:我們規(guī)定現(xiàn)在的時(shí)間前為負(fù),現(xiàn)在的時(shí)間后為正。
(1)情形一:蝸牛在現(xiàn)在位置的右邊6㎝處。式子表示為:
(+2)×(+3)=+6
數(shù)軸表示如右:
(2)情形二:蝸牛在現(xiàn)在位置的左邊6㎝處。式子表示為:(-2)×3=-6
數(shù)軸表示如右:
(3)情形三:蝸牛在現(xiàn)在位置的左邊6㎝處。式子表示為:(+2)×(-3)=-6
數(shù)軸表示如右
(4)情形四:蝸牛在現(xiàn)在位置的右邊6㎝處。式子表示為:(-2)×(-3)=+6
數(shù)軸表示如右:
仔細(xì)觀察上面得到的四個(gè)式子:
(1)(+2)×(+3)=+6
(2)(-2)×3=-6
(3)(+2)×(-3)=-6
(4)(-2)×(-3)=+6
根據(jù)你對(duì)乘法的思考,你得到什么規(guī)律?
(三)學(xué)生歸納法則
a.符號(hào):在上述4個(gè)式子中,我們只看符號(hào),有什么規(guī)律?
(+)×(+)=同號(hào)得
(-)×(+)=異號(hào)得
(+)×(-)=異號(hào)得
(-)×(-)=同號(hào)得
b.任何數(shù)與零相乘,積仍為。
(四)師生共同用文字?jǐn)⑹鲇欣頂?shù)乘法法則。
歸納:有理數(shù)乘法法則:兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘。
任何數(shù)與0相乘,積仍為0。
(五)運(yùn)用法則計(jì)算,鞏固法則。
例1計(jì)算:(1)(-5)×(-3);(2)(-7)×4;(3)(-3)×9;(4)(-3)×(-)
引導(dǎo)學(xué)生觀察、分析例1中(4)小題兩因數(shù)的關(guān)系,得出:有理數(shù)中仍然有:乘積是1的兩個(gè)數(shù)互為倒數(shù).
例2.見課本P30頁
(六)分層練習(xí),鞏固提高。
(1)計(jì)算(口答):
、佗冖邰
、茛蔻撷
四.課題小結(jié)
(1)有理數(shù)乘法法則:兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘,任何數(shù)同0相乘,都得0。
(2)如何進(jìn)行兩個(gè)有理數(shù)的乘法運(yùn)算:先確定積的符號(hào),再把絕對(duì)值相乘,當(dāng)有一個(gè)因數(shù)為零時(shí),積為零。
五.作業(yè)布置
課本P30頁練習(xí)1,2,3.
《有理數(shù)的除法》教案 篇3
一、學(xué)習(xí)目標(biāo):
1. 熟練掌握有理數(shù)的乘法法 則
2. 會(huì)運(yùn)用乘法運(yùn)算率簡(jiǎn)化乘法運(yùn)算.
3. 了解互為倒數(shù)的意義,并會(huì)求一個(gè)非零有理數(shù)的倒數(shù)
二、學(xué)習(xí)重點(diǎn):探索有 理數(shù)乘法運(yùn)算律
學(xué)習(xí)難點(diǎn):運(yùn)用乘法運(yùn)算律簡(jiǎn)化計(jì)算
三、學(xué)習(xí)過程:
(一)、情境引入:
1、復(fù)習(xí)有理數(shù)的乘法法則(兩個(gè)因數(shù)、兩個(gè)以上的因數(shù)),并舉例說明。
2、在含有負(fù)數(shù)的乘法運(yùn)算中,乘法交換律,結(jié)合律和分配律還成立嗎?
觀察 下列各有理數(shù)乘法,從中可得到怎樣的結(jié)論?
(1)(-6)(-7)= (-7)(-6)=
(2)[( -3)(-5)]2 = (-3)[(-5)2]=
(3)(-4)(- 3+5)= (-4 )(-3)+(-4)5=
3、請(qǐng)?jiān)倥e幾組數(shù)試一試,看上面所得的結(jié)論是否成立?
(二)、新課講解:
有理數(shù)乘法運(yùn)算律
交換律 ab =ba
結(jié)合律 ( ab)c=a(bc)
分配律 a(b+c)=ab+ac
例1.計(jì)算:
(1)8(- )(-0.125) (2)
(3)( )(-36) (4)
例2.計(jì)算
(1)8 (2)(4)( ) (3)( )( )
觀察例2中的三個(gè)運(yùn)算, 兩個(gè)因數(shù)有什么 特點(diǎn)?它們的乘積呢?你能夠得到什么結(jié)論?
(三)、鞏固練習(xí):
1.運(yùn)用運(yùn)算律填空.
(1)-2-3=-3(_____).
(2)[-32](-4)=-3[(______)(______)].
(3)-5[-2 +-3]=-5(_____)+(_____)-3
2.選擇題
(1)若a0 ,必有 ( )
A a0 B a0 C a,b同號(hào) D a,b異號(hào)
(2)利用分配律計(jì)算 時(shí),正確的方案可以是 ( )
A B
C D
3.運(yùn)用運(yùn)算律計(jì)算:
(1)(-25)(-85)(-4) (2) 14-12-1816
(3)6037-6017+6057 (4)18-23+1323-423
(5)(-4)(-18.36) (6)(- )0.125(-2 )
(7)(- + - - )(-20); (8)(-7.33)(42.07)+(-2.07)(-7.33)
四、課堂小結(jié):
通過本節(jié)課你學(xué)到了哪些知識(shí)?你 達(dá)成學(xué)習(xí)目標(biāo)了嗎?
五、作業(yè)布置:
課本第42頁習(xí)題2.5 第3題
數(shù)學(xué)評(píng)價(jià)手冊(cè)
六 、學(xué)后記/教后記
《有理數(shù)的除法》教案 篇4
1教學(xué)目標(biāo)
1.使學(xué)生理解有理數(shù)除法的意義,掌握有理數(shù)除法法則,會(huì)進(jìn)行有理數(shù)除法運(yùn)算;
2.運(yùn)用轉(zhuǎn)化思想,理解有理數(shù)除法的意義,培養(yǎng)學(xué)生新舊知識(shí)之間聯(lián)系的思維能力,通過乘除法之間的逆運(yùn)算,培養(yǎng)學(xué)生逆向思維的能力,提高學(xué)生的計(jì)算能力,培養(yǎng)轉(zhuǎn)化和全面分析問題的能力.
2學(xué)情分析
本節(jié)課是學(xué)生在學(xué)習(xí)了有理數(shù)的基礎(chǔ)上學(xué)習(xí)的,學(xué)生學(xué)起來比較容易
3重點(diǎn)難點(diǎn)
1.教學(xué)重點(diǎn):正確運(yùn)用有理數(shù)除法法則進(jìn)行有理數(shù)除法運(yùn)算;
2.教學(xué)難點(diǎn):理解零不能做除數(shù),零沒有倒數(shù),尋找有理數(shù)除法轉(zhuǎn)化為有理數(shù)乘法的方法和條件;
4教學(xué)過程
4.1有理數(shù)的除法
教學(xué)活動(dòng)
活動(dòng)1
有理數(shù)的除法
一、課前復(fù)習(xí)提問
1.有理數(shù)乘法法則;
2.有理數(shù)乘法的運(yùn)算律:乘法交換律,乘法結(jié)合律,乘法分配律;
3.倒數(shù)的意義.
二、講授新課
(一)有理數(shù)除法法則的推導(dǎo)
[問題]怎樣計(jì)算8÷(-4)呢?
[提問]小學(xué)學(xué)過的除法的意義是什么?
得出 ①8÷(-4)=-2;又②8×( )=-2;于是有
、8÷(-4)=8×( ).
由此得出有理數(shù)除法法則:
除以一個(gè)不等于0的數(shù),等于乘以這個(gè)數(shù)的倒數(shù).
可以表示為:
a÷b=a· (b≠0) .
類似于乘法法則可得:
兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除.零除以任何一個(gè)不等于0的數(shù),都得0.
對(duì)有理數(shù)除法法則的理解:
(1)法則所揭示的內(nèi)容告訴我們,有理數(shù)除法與小學(xué)時(shí)學(xué)的除法一樣,它是乘法的逆運(yùn)算,是借助“倒數(shù)”為媒介,將除法運(yùn)算轉(zhuǎn)化為乘法運(yùn)算進(jìn)行(強(qiáng)調(diào),因?yàn)?沒有倒數(shù),所以除數(shù)不能為0);
(2)法則揭示有理數(shù)除法的運(yùn)算步驟:第一步,確定商的符號(hào),第二步,求出商的絕對(duì)值.
(二)有理數(shù)除法法則的運(yùn)用
例1 計(jì)算:(1)(-36)÷9;
。2)( )÷( ).
強(qiáng)調(diào):兩數(shù)相除,先確定商的符號(hào),再確定商的絕對(duì)值.
例2 化簡(jiǎn)下列分?jǐn)?shù):
。1) ; (2) .
強(qiáng)調(diào):(1)符號(hào)法則;(2)一般來說,在能整除的情況下,往往采用法則的后一種形式,在確定符號(hào)后,直接除.在不能整除的情況下,則往往將除數(shù)換成倒數(shù),轉(zhuǎn)化為乘法.
例3 計(jì)算:
。1)(-125 )÷(-5);
。2)-2.5÷ ;
(三)課堂練習(xí)
1.教材P35練習(xí)
2.補(bǔ)充練習(xí)
。1)-1÷( )= ,0÷14 = , ÷(-3)=9.
(2)倒數(shù)等于本身的數(shù)是 .
。3)若a、b互為倒數(shù),則-13ab= .
(4)被除數(shù)是-3 ,除數(shù)比被除數(shù)大1 ,則商是 .
。5)若ab=1,且a=-1 ,則b .
。6)計(jì)算:
1.(-32)+(-2);-(-2 )÷(- );
2.125÷(-2 ); (-0.009)÷0.03; .
(7)若有理數(shù)a≠0,b≠0,則 的值為 .
。8)若a、b、c為有理數(shù),且 =-1,求 的值.
。ㄋ模┬〗Y(jié)
1.通過小學(xué)除法意義的理解和類比,得出有理數(shù)除法法則,法則一:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù),零不能做除數(shù).法則二:兩數(shù)相除,同號(hào)得正,異好號(hào)得負(fù),并把絕對(duì)值相除;零除以任何一個(gè)不等于零的數(shù)都得零.
2.有理數(shù)的除法有兩種方法,一般能整除時(shí)用第二種方法.強(qiáng)調(diào)要先確定結(jié)果的符號(hào).
(五)作業(yè)
教材P38中4
(六)教學(xué)反思
本節(jié)課是學(xué)生在學(xué)習(xí)了有理數(shù)乘法的基礎(chǔ)上學(xué)習(xí)的,在小學(xué)的時(shí)候已經(jīng)學(xué)習(xí)了兩數(shù)的除法法則,所以這節(jié)課的內(nèi)容對(duì)大部分學(xué)生來說,不是很難,他們只要會(huì)確定兩數(shù)相除商的符號(hào),然后在求商的絕對(duì)值就可以了。
《有理數(shù)的除法》教案 篇5
設(shè)計(jì)理念
1.注意突出學(xué)生的自主探索,通過一些熟悉的、具體的事物,讓學(xué)生在觀察、思考、探索中體會(huì)有理數(shù)的意義,探索數(shù)量關(guān)系,掌握有理數(shù)的運(yùn)算。教學(xué)中要注重讓學(xué)生通過自己的活動(dòng)來獲取、理解和掌握這些知識(shí)。
2.本課注意降低了對(duì)運(yùn)算的要求,尤其是刪去了繁難的運(yùn)算。注重使學(xué)生理解運(yùn)算的意義,掌握必要的基本的運(yùn)算技能。
教學(xué)目標(biāo)知識(shí)與技能:
1.使學(xué)生理解有理數(shù)倒數(shù)的意義。
2.使學(xué)生掌握有理數(shù)的除法法則,能夠熟練地進(jìn)行除法運(yùn)算。
過程與方法:
培養(yǎng)學(xué)生觀察、歸納、概括及運(yùn)算能力。
情感態(tài)度、價(jià)值觀:
讓學(xué)生感知數(shù)學(xué)來源于生活,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
重點(diǎn)
有理數(shù)除法法則。
難點(diǎn)
(1)、商的符號(hào)的確定;
(2)、0不能作除數(shù)的理解。
教學(xué)過程
一、復(fù)習(xí)引入
1.敘述有理數(shù)乘法法則
2.敘述有理數(shù)乘法的運(yùn)算律。
3.計(jì)算:
、(―6)
、
、(―3)(+7)―9(―6)
、
二、自主學(xué)習(xí)計(jì)算:
8
嘗試
8(- )
1.師生共同研究有理數(shù)除法法則:
、賳栴}:
一個(gè)數(shù)與2的乘積是-6,這個(gè)數(shù)是幾?你能否回答?這個(gè)問題寫成算式有兩種:
2( ?)=-6, (乘法算式)
也就是 (-6)2=( ?) (除法算式)
由2(-3)=-6,
我們有(-6)2=-3。另外,我們還知道: (-6) =-3。
所以,(-6)2=(-6) 。這表明除法可以轉(zhuǎn)化為乘法來進(jìn)行。
《有理數(shù)的除法》教案 篇6
一、課題 §2.9有理數(shù)的除法
二、教學(xué)目標(biāo)
1.使學(xué)生理解有理數(shù)倒數(shù)的意義;
2.使學(xué)生掌握有理數(shù)的除法法則,能夠熟練地進(jìn)行除法運(yùn)算;
3.培養(yǎng)學(xué)生觀察、歸納、概括及運(yùn)算能力.
三、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):有理數(shù)除法法則.
難點(diǎn):
(1)商的符號(hào)的確定.
(2)0不能作除數(shù)的理解.
四、教學(xué)手段
現(xiàn)代課堂教學(xué)手段
五、教學(xué)方法
啟發(fā)式教學(xué)
六、教學(xué)過程
。ㄒ唬、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問題
1.敘述有理數(shù)乘法法則.
2.敘述有理數(shù)乘法的運(yùn)算律.
3.計(jì)算:
(1)3×(-2); (2)-3×5; (3)(-2)×(-5).
(二)、導(dǎo)入新課
因?yàn)?×(-2)=-6,所以3x=-6時(shí),可以解得x=-2;
同樣-3×5=-15,解簡(jiǎn)易方程-3x=-15,得x=5.
在找x的值時(shí),就是求一個(gè)數(shù)乘以3等于-6;或者是找一個(gè)數(shù),使它乘以-3等于-15.已知一個(gè)因數(shù)的積,求另一個(gè)因數(shù),就是在小學(xué)學(xué)過的除法,除法是乘法的逆運(yùn)算.
三、講授新課
1.有埋數(shù)的倒數(shù)
0沒有倒數(shù),(0不能作除數(shù),分母是0沒有意義等概念在小學(xué)里是反復(fù)強(qiáng)調(diào)的.)
提問:怎樣求一個(gè)數(shù)的倒數(shù)?
答:整數(shù)可以看成分母是1的分?jǐn)?shù),求分?jǐn)?shù)的倒數(shù)是把這個(gè)數(shù)的分母與分子顛倒一下即可;求一個(gè)小數(shù)的倒數(shù),可以先把這個(gè)小數(shù)化成分
數(shù)再求倒數(shù).
什么性質(zhì)
所以我們說:乘積為1的兩個(gè)數(shù)互為倒數(shù),這個(gè)定義對(duì)有理數(shù)仍然適用.
這里a≠0,同小學(xué)一樣,在有理數(shù)范圍內(nèi),0不能作除數(shù),或者說0為分母時(shí)分?jǐn)?shù)無意義.
2.有理數(shù)除法法則
利用有理數(shù)倒數(shù)的概念,我們進(jìn)一步學(xué)習(xí)有理數(shù)除法.
因?yàn)?-2)×(-4)=8,所以8÷(-4)=-2.
由此,我們可以看出小學(xué)學(xué)過的除法法則仍適用于有理數(shù)除法,即
除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù).
0不能作除數(shù).
例1 計(jì)算:
課堂練習(xí)
(1)寫出下列各數(shù)的倒數(shù):
(2)計(jì)算:
3.有理數(shù)除法的符號(hào)法則
觀察上面的練習(xí),引導(dǎo)學(xué)生總結(jié)出有理數(shù)除法的商的符號(hào)法則:
兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù).
掌握符號(hào)法則,有的題就不必再將除數(shù)化成倒數(shù)再去乘了,可以確定符號(hào)后直接相除,這就是第二個(gè)有理數(shù)除法法則:
兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除.
0除以任何一個(gè)不為0的數(shù),都得0.
≠0).利用除法法則可以化簡(jiǎn)分?jǐn)?shù).
例2 化簡(jiǎn)下列分?jǐn)?shù):
例3 計(jì)算:
(4)(-7)÷3-20÷3(-7-20)÷3=(-27)÷3=-9.
。ㄋ模、小結(jié)
1.指導(dǎo)學(xué)生看書,重點(diǎn)是除法法則.
2.引導(dǎo)學(xué)生歸納有理數(shù)除法的一般步驟:(1)確定商的符號(hào);(2)把除數(shù)化為它的倒數(shù);(3)利用乘法計(jì)算結(jié)果.
七、練習(xí)設(shè)計(jì)
習(xí)題2.12 1、2、3、4、5、6題
八、板書設(shè)計(jì)
§2.9有理數(shù)的除法
(一)知識(shí)回顧 (三)例題解析 (五)課堂小結(jié)
例1、例2
。ǘ┯^察發(fā)現(xiàn) (四)課堂練習(xí) 練習(xí)設(shè)計(jì)
,七年級(jí)數(shù)學(xué)上冊(cè)北師大版2.9有理數(shù)的除法教案
《有理數(shù)的除法》教案 篇7
學(xué)習(xí)目標(biāo)
1. 理解除法的意義,理解除法是乘法的逆運(yùn)算,理解倒數(shù)的意義,掌握有理數(shù)的除法法則.
2. 熟練地進(jìn)行有理數(shù)的除法運(yùn)算;
3. 借助有理數(shù)乘法知識(shí),通過歸納、類比等方法獲得有理數(shù)的除法法則.
重點(diǎn) 有理數(shù)的除法法則
難點(diǎn) 理解商的符號(hào)及其絕對(duì)值與被除數(shù)和除數(shù)的關(guān)系
教學(xué)過程
一、自主學(xué)習(xí)
(一)、自學(xué)課文
(二)、導(dǎo)學(xué)練習(xí)
1. 小明從家里到學(xué)校,每分鐘走50米,共走了20分鐘,問小明家離學(xué)校有多遠(yuǎn)?
放學(xué)時(shí),小明仍然以每分鐘50米的速度回家,應(yīng)該走多少分鐘?
從上面這個(gè)例子你可以發(fā)現(xiàn),有理數(shù)除法與有理數(shù)乘法之間滿足怎樣的關(guān)系?
2.請(qǐng)找出下列有理數(shù)的倒數(shù)
-4 3 -8 - -1 -3.5
3.比較大。8(-4)_______8 (-15)3_______(-15)
(-1 )(-2) (-1 )(- )
計(jì)算:(1)(-15)(-3)= (2)(-12)(- )=
(3)(-8)(- )= (4)0(- )=
通過比較、計(jì)算,你能歸納出有理數(shù)的除法法則嗎?
有理數(shù)的除法法則:
(或換一種表達(dá)方法為):
用字母表示除法法則:
4.課本第35頁練習(xí)題
(三)自學(xué)疑難摘要:
組長(zhǎng)檢查等級(jí): 組長(zhǎng)簽名:
二、合作探究
例1 計(jì)算:
(1)(-18)6 (2) (- )
(3) (4)-3.5 (- )
注意:乘除混合運(yùn)算該怎么做呢?
例2化簡(jiǎn)下列分?jǐn)?shù):
(1) (2)
請(qǐng)思考:商的符號(hào)及絕對(duì)值同被除數(shù)和除數(shù)有什么關(guān)系?
三、展示提升
1、每個(gè)同學(xué)自主完成二中的練習(xí)后先在小組內(nèi)交流討論。
2、每個(gè)組根據(jù)分配的任務(wù)把自己組的結(jié)論板書到黑板上準(zhǔn)備展示。
3、每個(gè)組在展示的過程中其他組的同學(xué)認(rèn)真聽作好補(bǔ)充和提問。
四、反饋與檢測(cè)
1.計(jì)算84(-7)等于( ).
A.-12 B.12 C.-14 D.14
2.- 的倒數(shù)是( ).
A.- B. C. D.-2
3.下列說法錯(cuò)誤的是( ).
A.任何有理數(shù)都有倒數(shù) B.互為倒數(shù)的兩數(shù)的積等于1
C.互為倒數(shù)的兩數(shù)符號(hào)相同 D.1和其本身互為倒數(shù)
4.計(jì)算: (1)(-40)(-12) (2)(-60)(+3 )
(3)(-30 )(-15) (4)(-0.33)(+ )(-9)
(5)(-2 )(-5)(-3 ) (6)(-81)2 (-16)
5.(1)兩數(shù)的積是1,已知一數(shù)是-2 ,求另一數(shù).
(2)兩數(shù)的商是-3 ,已知被除數(shù)4 ,求除數(shù).
6.解下列方程:
(1)-3.4x=-6.8 (2)- x=-
7.課本第36頁練習(xí)題
組長(zhǎng)檢查等級(jí): 組長(zhǎng)簽名:
小結(jié):通過這節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識(shí)?還有哪些地方不懂?請(qǐng)說出來
《有理數(shù)的除法》教案 篇8
一、知識(shí)與技能
(1)會(huì)用計(jì)算器計(jì)算有理數(shù)的除法運(yùn)算。
(2)掌握有理數(shù)的加減乘除混合運(yùn)算。
二、過程與方法
通過本節(jié)課的數(shù)學(xué)活動(dòng),培養(yǎng)學(xué)生分析問題,綜合應(yīng)用知識(shí)解決實(shí)際問題的能力。
三、情感態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生動(dòng)手操作能力,體會(huì)數(shù)學(xué)知識(shí)的應(yīng)用價(jià)值。
教學(xué)重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):掌握有理數(shù)的加減乘除混合運(yùn)算。
2.難點(diǎn):符號(hào)的確定。
3.關(guān)鍵:掌握運(yùn)算順序以及運(yùn)算法則。
四、教學(xué)過程、課堂引入
1、在小學(xué)里,加減乘除四則運(yùn)算的順序是怎樣的?
先乘除后加減,同級(jí)運(yùn)算從左往右依次進(jìn)行,有括號(hào)的,先算括號(hào)內(nèi)的,另外還要注意靈活應(yīng)用運(yùn)算律。 有理數(shù)加減、乘除混合運(yùn)算順序與數(shù)的運(yùn)算順序一樣。
五、新授
例8.計(jì)算:(1)-8+4(-2);
(2)(-7)(-5)-90(-15)。
分析:(1)按運(yùn)算順序,先做除法,再做加法。(2)先算乘、除法,然后做減法。
解:(1)-8+4(-2)
=-8+(-2) =-10
(2)(-7)(-5)-90(-15)
=35-(-6)=35+6=41
例9:某公司去年1~3月平均每月虧損1.5萬元,4~6月平均每月盈利2萬元,7~10月平均每月盈利1.7萬元,11~12月平均每月虧損2.3萬元,這個(gè)公司去年總的盈利情況如何?
分析:盈利與虧損是具有相反意義的量,我們把盈利額記為正數(shù),虧損額記為負(fù)數(shù),那么公司去年全年虧盈額就是去年1~12月的所虧損額和盈利額的和。
《有理數(shù)的除法》教案 篇9
一、素質(zhì)教育目標(biāo)
。ㄒ唬┲R(shí)教學(xué)點(diǎn)
1.了解有理數(shù)除法的定義.
2.理解倒數(shù)的意義.
3.掌握有理數(shù)除法法則,會(huì)進(jìn)行有理數(shù)的除法運(yùn)算.
。ǘ┠芰τ(xùn)練點(diǎn)
1.通過有理數(shù)除法法則的導(dǎo)出及運(yùn)算,讓學(xué)生體會(huì)轉(zhuǎn)化思想.
2.培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)思想指導(dǎo)思維活動(dòng)的能力.
(三)德育滲透點(diǎn)
通過學(xué)習(xí)有理數(shù)除法運(yùn)算、感知數(shù)學(xué)知識(shí)具有普遍聯(lián)系性、相互轉(zhuǎn)化性.
(四)美育滲透點(diǎn)
把小學(xué)算術(shù)里的乘法法則推廣到有理數(shù)范圍內(nèi),體現(xiàn)了知識(shí)體系的完整美.
二、學(xué)法引導(dǎo)
1.教學(xué)方法:遵循啟發(fā)式教學(xué)原則,注意創(chuàng)設(shè)問題情境,精心構(gòu)思啟發(fā)導(dǎo)語并及時(shí)點(diǎn)撥,使學(xué)生主動(dòng)發(fā)展思維和能力.
2.學(xué)生學(xué)法:通過練習(xí)探索新知→歸納除法法則→鞏固練習(xí)
三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
1.重點(diǎn):除法法則的靈活運(yùn)用和倒數(shù)的概念.
2.難點(diǎn):有理數(shù)除法確定商的符號(hào)后,怎樣根據(jù)不同的情況來取適當(dāng)?shù)姆椒ㄇ笊痰慕^對(duì)值.
3.疑點(diǎn):對(duì)零不能作除數(shù)與零沒有倒數(shù)的理解.
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀、自制膠片、彩粉筆.
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師出示探索性練習(xí),學(xué)生討論歸納除法法則,教師出示鞏固性練習(xí),學(xué)生以多種形式完成.
七、教學(xué)步驟
。ㄒ唬﹦(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入
師:以上我們學(xué)習(xí)了有理數(shù)的乘法,這節(jié)我們應(yīng)該學(xué)習(xí)有理數(shù)的除法,板書課題.
【教法說明】有理數(shù)的除法同小學(xué)算術(shù)中除法一樣—除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù),所以必須以學(xué)好求一個(gè)有理數(shù)的倒數(shù)為基礎(chǔ)學(xué)習(xí)有理數(shù)的除法.
(二)探索新知,講授新課
1.倒數(shù).
。ǔ鍪就队1)
4×=1!粒1。0.5×=1
0×=1。-4×=1!粒1
學(xué)生活動(dòng):口答以上題目.
【教法說明】在有理數(shù)乘法的基礎(chǔ)上,學(xué)生很容易地做出這幾個(gè)題目,在題目的選擇上,注意了數(shù)的全面性,即有正數(shù)、0、負(fù)數(shù),又有整數(shù)、分?jǐn)?shù),在數(shù)的變化中,讓學(xué)生回憶、體會(huì)出求各種數(shù)的倒數(shù)的方法.
師問:兩個(gè)數(shù)乘積是1,這兩個(gè)數(shù)有什么關(guān)系?
學(xué)生活動(dòng):乘積是1的兩個(gè)數(shù)互為倒數(shù).(板書)
師問:0有倒數(shù)嗎?為什么?
學(xué)生活動(dòng):通過題目0×=1得出0乘以任何數(shù)都不得1,0沒有倒數(shù).
師:引入負(fù)數(shù)后,乘積是1的兩個(gè)負(fù)數(shù)也互為倒數(shù),如-4與,與互為倒數(shù),即的倒數(shù)是.
提出問題:根據(jù)以上題目,怎樣求整數(shù)、分?jǐn)?shù)、小數(shù)的倒數(shù)?
【教法說明】 教師注意創(chuàng)設(shè)問題情境,讓學(xué)生參與思考,循序漸進(jìn)地引出,對(duì)于有理數(shù)也有倒數(shù)是.對(duì)于怎樣求整數(shù)、分?jǐn)?shù)、小數(shù)的倒數(shù),學(xué)生還很難總結(jié)出方法,提出這個(gè)問題是讓學(xué)生帶著問題來做下組練習(xí).
。ǔ鍪就队2)
求下列各數(shù)的倒數(shù):
(1)。(2)。(3)。
。4)。(5)-5。(6)1.
學(xué)生活動(dòng):通過思考口答這6小題,討論后得出,求整數(shù)的倒數(shù)是用1除以它,求分?jǐn)?shù)的倒數(shù)是分子分母顛倒位置。求小數(shù)的倒數(shù)必須先化成分?jǐn)?shù)再求.
2.有理數(shù)的'除法
計(jì)算:8÷(-4).
計(jì)算:8×=?(-2)
∴8÷(-4)=8×.
再嘗試:-16÷(-2)=?-16×=?
師:根據(jù)以上題目,你能說出怎樣計(jì)算有理數(shù)的除法嗎?能用含字母的式子表示嗎?
學(xué)生活動(dòng):同桌互相討論.(一個(gè)學(xué)生回答)
師強(qiáng)調(diào)后板書:
[板書]
【教法說明】通過學(xué)生親自演算和教師的引導(dǎo),對(duì)有理數(shù)除法法則及字母表示有了非常清楚的認(rèn)識(shí),教師放手讓學(xué)生總結(jié)法則,尤其是字母表示,訓(xùn)練學(xué)生的歸納及口頭表達(dá)能力.
。ㄈ﹪L試反饋,鞏固練習(xí)
師在黑板上出示例題.
計(jì)算(1)(-36)÷9,(2)÷.
學(xué)生嘗試做此題目.
。ǔ鍪就队3)
1.計(jì)算:
。1)(-18)÷6。(2)(-63)÷(-7)。(3)(-36)÷6。
。4)1÷(-9)。(5)0÷(-8)。(6)16÷(-3).
2.計(jì)算:
。1)÷。(2)(-6.5)÷0.13。
。3)÷。(4)÷(-1).
學(xué)生活動(dòng):1題讓學(xué)生搶答,教師用復(fù)合膠片顯示結(jié)果.2題在練習(xí)本上演示,兩個(gè)同學(xué)板演(教師訂正).
【教法說明】此組練習(xí)中兩個(gè)題目都是對(duì)的直接應(yīng)用.1題是整數(shù),利用口答形式訓(xùn)練學(xué)生速算能力.2題是小數(shù)、分?jǐn)?shù)略有難度,要求學(xué)生自行演算,加強(qiáng)運(yùn)算的準(zhǔn)確性,2題(2)小題必須把小數(shù)都化成分?jǐn)?shù)再轉(zhuǎn)化成乘法來計(jì)算.
提出問題:(1)兩數(shù)相除,商的符號(hào)怎樣確定,商的絕對(duì)值呢?(2)0不能做除數(shù),0做被除數(shù)時(shí)商是多少?
學(xué)生活動(dòng):分組討論,1—2個(gè)同學(xué)回答.
[板書]
2.兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除.
0除以任何不等于0的數(shù),都得0.
【教法說明】通過上組練習(xí)的結(jié)果,不難看出有理數(shù)的除法與有理數(shù)乘法有類似的法則,這個(gè)法則的得出為計(jì)算有理數(shù)除法又添了一種方法,這時(shí)教師要及時(shí)指出,在做有理數(shù)除法的題目時(shí),要根據(jù)具體情況,靈活運(yùn)用這兩種方法.
。ㄋ模┳兪接(xùn)練,培養(yǎng)能力
回顧例1計(jì)算:(1)(-36)÷9。(2)÷.
提出問題:每個(gè)題目你想采用哪種法則計(jì)算更簡(jiǎn)單?
學(xué)生活動(dòng):(1)題采用兩數(shù)相除,異號(hào)得負(fù)并把絕對(duì)值相除的方法較簡(jiǎn)單.
。2)題仍用除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)較簡(jiǎn)單.
提出問題:-36:9=?。:=?它們都屬于除法運(yùn)算嗎?
學(xué)生活動(dòng):口答出答案.
(出示投影4)
例2?化簡(jiǎn)下列分?jǐn)?shù)
。1)。(2)。(3)或3:(-36)
(4)。(5).
例3?計(jì)算
(1)÷(-6)。(2)-3.5÷×。
。3)(-6)÷(-4)×.
學(xué)生活動(dòng):例2讓學(xué)生口答,例3全體同學(xué)獨(dú)立計(jì)算,三個(gè)學(xué)生板演.
【教法說明】例2是檢查學(xué)生對(duì)有理數(shù)除法法則的靈活運(yùn)用能力,并滲透了除法、分?jǐn)?shù)、比可互相轉(zhuǎn)化,并且通過這種轉(zhuǎn)化,常常可能簡(jiǎn)化計(jì)算.例3培養(yǎng)學(xué)生分析問題的能力,優(yōu)化學(xué)生思維品質(zhì):
如在(1)÷(-6)中.
根據(jù)方法①÷(-6)=×=.
根據(jù)方法②÷(-6)=(24+)×=4+=.
讓學(xué)生區(qū)分方法的差異,點(diǎn)明方法②非常簡(jiǎn)便,肯定當(dāng)除法轉(zhuǎn)化成乘法時(shí),可以利用有理數(shù)乘法運(yùn)算律簡(jiǎn)化運(yùn)算.(2)(3)小題也是如此.
。ㄎ澹w納小結(jié)
師:今天我們學(xué)習(xí)了有理數(shù)的除法及倒數(shù)的概念,回答問題:
1.的倒數(shù)是__________________。
2.。
3.若、同號(hào),則。
若、異號(hào),則。
若,時(shí),則。
學(xué)生活動(dòng):分組討論,三個(gè)學(xué)生口答.
【教法說明】對(duì)這節(jié)課全部知識(shí)點(diǎn)的回顧不是教師單純地總結(jié),而是讓學(xué)生在思考回答的過程中自己把整節(jié)內(nèi)容進(jìn)行了梳理,并且上升到了用字母表示的數(shù)學(xué)式子,逐步培養(yǎng)學(xué)生用數(shù)學(xué)語言表達(dá)數(shù)學(xué)規(guī)律的能力.
八、隨堂練習(xí)
1.填空題
。1)的倒數(shù)為__________,相反數(shù)為____________,絕對(duì)值為___________
。2)(-18)÷(-9)=_____________。
(3)÷(-2.5)=_____________。
。4)。
。5)若,是。
(6)若、互為倒數(shù),則。
(7)或、互為相反數(shù)且,則,。
。8)當(dāng)時(shí),有意義。
(9)當(dāng)時(shí),。
。10)若,,則,和符號(hào)是_________,___________.
2.計(jì)算
(1)-4.5÷×。
(2)(-12)÷〔(-3)+(-15)〕÷(+5).
九、布置作業(yè)
。ㄒ唬┍刈鲱}:1.仿照例1、例2自編2道題,同桌交換解答.
2.計(jì)算:(1)×÷。
。2)-6÷(-0.25)×.
3.當(dāng),,時(shí)求的值.
。ǘ┻x做題:1.填空:用“>”“<”“=”號(hào)填空
。1)如果,則,。
(2)如果,則,。
。3)如果,則,。
。4)如果,則,。
2.判斷:正確的打“√”錯(cuò)的打“×”
。1)。
。2).
3.(1)倒數(shù)等于它本身的數(shù)是______________.
(2)互為相反數(shù)的數(shù)(0除外)商是________________.
【教法說明】必做題為本節(jié)的重點(diǎn)內(nèi)容,首先在這節(jié)課學(xué)習(xí)的基礎(chǔ)上讓同學(xué)仿照例題編題,學(xué)生也有這方面的能力,極大調(diào)動(dòng)了學(xué)生積極性,提高了學(xué)生運(yùn)用知識(shí)的能力.
選作題是對(duì)這節(jié)課重點(diǎn)內(nèi)容的進(jìn)一步理解和運(yùn)用,為學(xué)有余力的學(xué)生提供了展示自己的機(jī)會(huì).
《有理數(shù)的除法》教案 篇10
教學(xué)目標(biāo):
知識(shí)與技能:理解倒數(shù)的意義,會(huì)求有理數(shù)的倒數(shù)。了解有理數(shù)除法的意義,理解有理數(shù)除法的法則,會(huì)進(jìn)行有理數(shù)的除法運(yùn)算.
過程與方法:通過有理數(shù)除 法的法則的導(dǎo)出及運(yùn)用,學(xué)生能體會(huì)轉(zhuǎn)化的思想。
感知數(shù)學(xué)知識(shí)具有普遍聯(lián)系性、相互轉(zhuǎn)化性。
情感與態(tài)度:通過有理數(shù)乘法運(yùn)算的推廣,體會(huì)知識(shí)系統(tǒng)的完整性。
體會(huì)在解決問題的過程中與他人合作的重要性。通過對(duì)解決問題的過程的反思,獲得解決問題的經(jīng)驗(yàn)。
教學(xué)重點(diǎn):有理數(shù)的除法法則及其運(yùn)用
教學(xué)難點(diǎn):(1)商的符號(hào)的確定。(2)0不能作除數(shù)的理解。
教材分析: 乘法與除法互為逆運(yùn)算,小學(xué)已經(jīng)學(xué)過。通過實(shí)例引入,說明它在有理數(shù)的范圍內(nèi)也成立。本節(jié)內(nèi)容在學(xué)生已有有理數(shù)乘法知識(shí)的基礎(chǔ)上 ,通過學(xué)生經(jīng)歷從具體情景中抽象出法則的過程,使他們發(fā)現(xiàn)其中的規(guī)律,掌握必要的運(yùn)算技能,使學(xué)生在有理數(shù)運(yùn)算的學(xué)習(xí)中繼續(xù)發(fā)展數(shù)感,在符號(hào)法則的學(xué)習(xí)中增強(qiáng)符號(hào)感。
教具: 多媒體課件
教學(xué)方法 :引導(dǎo)發(fā)現(xiàn)法 類比歸納法
課 時(shí)安排:一課時(shí)
創(chuàng)設(shè)情境
問題:有四名同學(xué)參加數(shù)學(xué)測(cè)驗(yàn),以90分為標(biāo)準(zhǔn),超過得分?jǐn)?shù)記為正數(shù),不足的分?jǐn)?shù)記為負(fù)數(shù),評(píng)分記錄 如下:+5、-20。-19。-14。求:這四名同學(xué)的平均成績(jī)是超過80 分或不足80分? 學(xué)生在教師的激情 互動(dòng)中,思考列式(+5-20-19-14)÷4
化簡(jiǎn):(-48)÷4=?(但不知如何計(jì)算)
揭示課題
從實(shí)際生活引入,體現(xiàn)數(shù)學(xué)知識(shí)源于生活及數(shù)學(xué)的現(xiàn)實(shí)意義。
復(fù)習(xí)回顧 前置補(bǔ)償
求下列各數(shù)的倒數(shù):
(1)- ;(2)4 ;(3)0.2(4)-0.25;(5)-1
學(xué)生對(duì)老師的提問進(jìn)行搶答 為學(xué)習(xí)今天的有理數(shù)除法先復(fù)習(xí)小學(xué)倒數(shù)概念
探究活動(dòng)一 課件出示練習(xí)題
填空:
、 8÷(-2)=8×( );
② 6÷(-3)=6×( );
、 -6÷( )=-6× ;
④ -6÷( )=-6× 。
教師強(qiáng)調(diào)0沒有倒數(shù)。 學(xué)生填空后試著得出互為倒數(shù)的概念(乘積是1的兩個(gè)數(shù)互為倒數(shù))
培養(yǎng)學(xué)生發(fā)現(xiàn)問題總結(jié)問題的能力
探究活動(dòng)二 引例1 計(jì)算:(-6)÷2
根據(jù)除法是乘法的逆運(yùn)算,引導(dǎo)學(xué)生 將有理數(shù)的除法運(yùn)算轉(zhuǎn)化為學(xué)生已知的乘法運(yùn)算。
強(qiáng)調(diào)0不能作除數(shù)。(舉例強(qiáng)化已導(dǎo)出的法則) 學(xué)生自主探究有理數(shù)的除法運(yùn)算轉(zhuǎn)化為學(xué)生一致的乘法運(yùn)算
學(xué)生歸納導(dǎo)出法則(一):除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)
小組合作交流探究發(fā)現(xiàn)結(jié)果
探究活動(dòng)三
。ㄅe例強(qiáng)化已導(dǎo)出的法則)
例1計(jì)算(1)(-105)÷7[
(2)6÷(-0.25)
(3)(-0.09)÷(-0.3)
教師強(qiáng)調(diào)(1)除法法則與乘法法則相近,只是“乘”“除”二字不同,很容易記。.(2)此法則是有理數(shù)的除法運(yùn)算的又一種 方法。
學(xué)生自己觀察回憶,進(jìn)行自主學(xué)習(xí)和合作交流, 得出有理數(shù)的除法法則(兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘。0除以任何不等于0的數(shù)都得0)
激發(fā)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性滿足學(xué)生的表現(xiàn)欲和探究欲)
強(qiáng)化練習(xí) 課本 例2計(jì)算 :
。1)(- )÷(-6)÷(- )
。2)( - )÷(- )
學(xué)生試著獨(dú)立完成 有理數(shù)的除法法則的靈活應(yīng)用,并滲透了除法、分?jǐn)?shù)、比可互相轉(zhuǎn)化。
反饋矯正
課本69—70頁第1、2、3題 學(xué)生獨(dú)立完成并小組互評(píng) 鞏固法則,調(diào)動(dòng)學(xué)生積極性
歸納小節(jié) 1、 學(xué)習(xí)內(nèi)容:倒數(shù)的概念及求法;有理數(shù)的除法
2、 通過本節(jié)的學(xué)習(xí),你有哪些體會(huì)?請(qǐng)與同學(xué)交流。
同學(xué)之間進(jìn)行交 流,小結(jié)本節(jié)內(nèi)容 培養(yǎng)了學(xué)生總結(jié)問題的能力
作業(yè)布置 必做題:課本70頁第1,3,4題
選做題:若ab≠0,則 可能的取值是_______. 綜合考查,學(xué)以致用。 不同的學(xué)生得到不同的發(fā)展
附:板書設(shè)計(jì)
2.9 有理數(shù)的除法
例1計(jì)算: 練習(xí)處:
例2 計(jì)算:
教學(xué)反思:
《有理數(shù)的除法》一課是傳統(tǒng)內(nèi)容,在設(shè)計(jì)理念上,我努力體現(xiàn)“以學(xué)生為主”的思想,從學(xué)生已有的知識(shí)經(jīng)驗(yàn)出發(fā),展開教學(xué),使學(xué)生自然進(jìn)入狀態(tài),一切都很順暢,達(dá)到了課前設(shè)計(jì)的構(gòu)想。在教學(xué)中,突出了學(xué)生在教學(xué)學(xué)習(xí)過程的主體地位,突出了 探索式學(xué)習(xí)方式,讓學(xué)生經(jīng)歷了觀察、實(shí)踐、猜測(cè)、推理、交流、反思等活力,既應(yīng)用了基本概念、基礎(chǔ)知識(shí)又鍛煉了學(xué)生能力 。
在這節(jié)課中,本人認(rèn)為也有不足之處,由于學(xué)生的層次各異,在總結(jié)問題時(shí),中等以下和學(xué)習(xí)有困難的學(xué)生明顯信心不足,要注意和他們交流、幫助他們把復(fù)雜的問題化為簡(jiǎn)單的問題。
《有理數(shù)的除法》教案 篇11
教學(xué)目標(biāo)
1、理解有理數(shù)除法的意義,掌握有理數(shù)除法法則一,會(huì)進(jìn)行有理數(shù)除法運(yùn)算。
2、通過有理數(shù)除法法則的`導(dǎo)出及運(yùn)算,讓學(xué)生體會(huì)轉(zhuǎn)化思想.培養(yǎng)學(xué)生新舊知識(shí)聯(lián)系的思維能力。
3、通過學(xué)習(xí)有理數(shù)除法運(yùn)算、感知數(shù)學(xué)知識(shí)具有普遍聯(lián)系性、相互轉(zhuǎn)化性.
通過新舊知識(shí)的聯(lián)系,激發(fā)學(xué)生的求知欲望。
教學(xué)重點(diǎn)
有理數(shù)除法法則
教學(xué)難點(diǎn)
(1)商的符號(hào)的確定
(2)0不能作除數(shù)的理解
教學(xué)過程
兩段式設(shè)計(jì)的基礎(chǔ):可以運(yùn)用學(xué)生學(xué)習(xí)有理數(shù)減法法則時(shí)用過的方法對(duì)推導(dǎo)除法法則的正遷移作用
一、從學(xué)生原有認(rèn)知結(jié)構(gòu)設(shè)計(jì)問題
1、計(jì)算:4×(-2); (2)-3×5; (3)(-2)×(-5).
2、已知乘積和一個(gè)因數(shù),求另一個(gè)因數(shù),就是在小學(xué)學(xué)過的除法,除法是乘法的逆運(yùn)算.今天我們就來探求有理數(shù)的除法應(yīng)當(dāng)怎樣進(jìn)行?
二、學(xué)生預(yù)習(xí)問題的設(shè)置
議一議:
(1)對(duì)于除法運(yùn)算(-8)÷(+4),你能用乘法的知識(shí)求出商來嗎?如果能,所得的商應(yīng)是什么數(shù)?
。2)請(qǐng)你舉出更多有理數(shù)除法的例子試一試。舉出4個(gè)例子。
。3)你能由此歸納出和有理數(shù)乘法法則相國類似的有理數(shù)除法法則嗎?
三、學(xué)生課堂交流階段
1、組內(nèi)交流
2、小組匯報(bào)
四、教師總結(jié)
由此得到有理數(shù)除法的法則(一):
1. 同號(hào)兩數(shù)相除得正,異號(hào)兩數(shù)相除得負(fù),并把絕對(duì)值相除;
2. 0不能做除數(shù),0除以任何數(shù)都得0。
教師在總結(jié)中要對(duì)這種逆運(yùn)算的關(guān)系進(jìn)行強(qiáng)調(diào),
因?yàn)?×(-2)=-8,所以(-8)÷(+4)=-2;
同樣-3×5=-15,15÷(-3)=5.
《有理數(shù)的除法》教案 篇12
教學(xué)目標(biāo)
1.理解有理數(shù)除法的意義,熟練掌握有理數(shù)除法法則,會(huì)進(jìn)行運(yùn)算;
2.了解倒數(shù)概念,會(huì)求給定有理數(shù)的倒數(shù);
3.通過將除法運(yùn)算轉(zhuǎn)化為乘法運(yùn)算,培養(yǎng)學(xué)生的轉(zhuǎn)化的思想;通過運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力。
教學(xué)建議
。ㄒ唬┲攸c(diǎn)、難點(diǎn)分析
本節(jié)教學(xué)的重點(diǎn)是熟練進(jìn)行運(yùn)算,教學(xué)難點(diǎn) 是理解法則。
1.有理數(shù)除法有兩種法則。法則1:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)。是把除法轉(zhuǎn)化為乘法來解決問題。法則2是把有理數(shù)除法納入有理數(shù)運(yùn)算的統(tǒng)一程序:一確定符號(hào);二計(jì)算絕對(duì)值。如:按法則1計(jì)算:原式;按法則2計(jì)算:原式。
2.對(duì)于除法的兩個(gè)法則,在計(jì)算時(shí)可根據(jù)具體的情況選用,一般在不能整除的情況下應(yīng)用第一法則。如;在有整除的情況下,應(yīng)用第二個(gè)法則比較方便,如;在能整除的情況下,應(yīng)用第二個(gè)法則比較方便,如,如寫成就麻煩了。
。ǘ┲R(shí)結(jié)構(gòu)
。ㄈ┙谭ńㄗh
1.學(xué)生實(shí)際運(yùn)算時(shí),老師要強(qiáng)調(diào)先確定商的符號(hào),然后在根據(jù)不同情況采取適當(dāng)?shù)姆椒ㄇ笊痰慕^對(duì)值,求商的絕對(duì)值時(shí),可以直接除,也可以乘以除數(shù)的倒數(shù)。
2.關(guān)于0不能做除數(shù)的問題,讓學(xué)生結(jié)合小學(xué)的知識(shí)接受這一認(rèn)識(shí)就可以了,不必具體講述0為什么不能做除數(shù)的理由。
3.理解倒數(shù)的概念
。1)根據(jù)定義乘積為1的兩個(gè)數(shù)互為倒數(shù),即:,則互為倒數(shù)。如:,則2與,-2與互為倒數(shù)。
。2)由倒數(shù)的定義,我們可以得到求已知數(shù)倒數(shù)的一種基本方法:即用1除以已知數(shù),所得商就是已知數(shù)的倒數(shù)。如:求的倒數(shù):計(jì)算,-2就是的倒數(shù)。一般我們求已知數(shù)的倒數(shù)很少用這種方法,實(shí)際應(yīng)用時(shí)我們常把已知數(shù)看作分?jǐn)?shù)形式,然后把分子、分母顛倒位置,所得新數(shù)就是原數(shù)的倒數(shù)。如-2可以看作,分子、分母顛倒位置后為,就是的倒數(shù)。
。3)倒數(shù)與相反數(shù)這兩個(gè)概念很容易混淆。要注意區(qū)分。首先倒數(shù)是指乘積為1的兩個(gè)數(shù),而相反數(shù)是指和為0的兩個(gè)數(shù)。如:,2與互為倒數(shù),2與-2互為相反數(shù)。其次互為倒數(shù)的兩個(gè)數(shù)符號(hào)相同,而互為相反數(shù)符號(hào)相反。如:-2的倒數(shù)是,-2的相反數(shù)是+2;另外0沒有倒數(shù),而0的相反數(shù)是0。
4.關(guān)于倒數(shù)的求法要注意:
(1)求分?jǐn)?shù)的倒數(shù),只要把這個(gè)分?jǐn)?shù)的分子、分母顛倒位置即可.
(2)正數(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)仍是負(fù)數(shù).
(3)負(fù)倒數(shù)的定義:乘積是-1的兩個(gè)數(shù)互為負(fù)倒數(shù).
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
1.了解有理數(shù)除法的定義.
2.理解倒數(shù)的意義.
3.掌握有理數(shù)除法法則,會(huì)進(jìn)行運(yùn)算.
(二)能力訓(xùn)練點(diǎn)
1.通過有理數(shù)除法法則的導(dǎo)出及運(yùn)算,讓學(xué)生體會(huì)轉(zhuǎn)化思想.
2.培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)思想指導(dǎo)思維活動(dòng)的能力.
。ㄈ┑掠凉B透點(diǎn)
通過學(xué)習(xí)有理數(shù)除法運(yùn)算、感知數(shù)學(xué)知識(shí)具有普遍聯(lián)系性、相互轉(zhuǎn)化性.
。ㄋ模┟烙凉B透點(diǎn)
把小學(xué)算術(shù)里的乘法法則推廣到有理數(shù)范圍內(nèi),體現(xiàn)了知識(shí)體系的完整美.
二、學(xué)法引導(dǎo)
1.教學(xué)方法:遵循啟發(fā)式教學(xué)原則,注意創(chuàng)設(shè)問題情境,精心構(gòu)思啟發(fā)導(dǎo)語 并及時(shí)點(diǎn)撥,使學(xué)生主動(dòng)發(fā)展思維和能力.
2.學(xué)生學(xué)法:通過練習(xí)探索新知→歸納除法法則→鞏固練習(xí)
三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
1.重點(diǎn):除法法則的靈活運(yùn)用和倒數(shù)的概念.
2.難點(diǎn):有理數(shù)除法確定商的符號(hào)后,怎樣根據(jù)不同的情況來取適當(dāng)?shù)姆椒ㄇ笊痰慕^對(duì)值.
3.疑點(diǎn):對(duì)零不能作除數(shù)與零沒有倒數(shù)的理解.
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀、自制膠片、彩粉筆.
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師出示探索性練習(xí),學(xué)生討論歸納除法法則,教師出示鞏固性練習(xí),學(xué)生以多種形式完成.
七、教學(xué)步驟
。ㄒ唬﹦(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入
師:以上我們學(xué)習(xí)了有理數(shù)的乘法,這節(jié)我們應(yīng)該學(xué)習(xí),板書課題.
【教法說明】同小學(xué)算術(shù)中除法一樣—除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù),所以必須以學(xué)好求一個(gè)有理數(shù)的倒數(shù)為基礎(chǔ)學(xué)習(xí).
。ǘ┨剿餍轮v授新課
1.倒數(shù).
。ǔ鍪就队1)
4×( )=1; ×( )=1; 0.5×( )=1;
0×( )=1; -4×( )=1; ×( )=1.
學(xué)生活動(dòng):口答以上題目.
【教法說明】在有理數(shù)乘法的基礎(chǔ)上,學(xué)生很容易地做出這幾個(gè)題目,在題目的選擇上,注意了數(shù)的全面性,即有正數(shù)、0、負(fù)數(shù),又有整數(shù)、分?jǐn)?shù),在數(shù)的變化中,讓學(xué)生回憶、體會(huì)出求各種數(shù)的倒數(shù)的方法.
師問:兩個(gè)數(shù)乘積是1,這兩個(gè)數(shù)有什么關(guān)系?
學(xué)生活動(dòng):乘積是1的兩個(gè)數(shù)互為倒數(shù).(板書)
師問:0有倒數(shù)嗎?為什么?
學(xué)生活動(dòng):通過題目0×( )=1得出0乘以任何數(shù)都不得1,0沒有倒數(shù).
師:引入負(fù)數(shù)后,乘積是1的兩個(gè)負(fù)數(shù)也互為倒數(shù),如-4與,與互為倒數(shù),即的倒數(shù)是.
提出問題:根據(jù)以上題目,怎樣求整數(shù)、分?jǐn)?shù)、小數(shù)的倒數(shù)?
【教法說明】教師注意創(chuàng)設(shè)問題情境,讓學(xué)生參與思考,循序漸進(jìn)地引出,對(duì)于有理數(shù)也有倒數(shù)是.對(duì)于怎樣求整數(shù)、分?jǐn)?shù)、小數(shù)的倒數(shù),學(xué)生還很難總結(jié)出方法,提出這個(gè)問題是讓學(xué)生帶著問題來做下組練習(xí).
。ǔ鍪就队2)
求下列各數(shù)的倒數(shù):
(1); (2); (3);
。4); (5)-5; (6)1.
學(xué)生活動(dòng):通過思考口答這6小題,討論后得出,求整數(shù)的倒數(shù)是用1除以它,求分?jǐn)?shù)的倒數(shù)是分子分母顛倒位置;求小數(shù)的倒數(shù)必須先化成分?jǐn)?shù)再求.
2.
計(jì)算:8÷(-4).
計(jì)算:8×=? (-2)
∴8÷(-4)=8×.
再嘗試:-16÷(-2)=? -16×=?
師:根據(jù)以上題目,你能說出怎樣計(jì)算嗎?能用含字母的式子表示嗎?
學(xué)生活動(dòng):同桌互相討論.(一個(gè)學(xué)生回答)
師強(qiáng)調(diào)后板書:
。郯鍟
【教法說明】通過學(xué)生親自演算和教師的引導(dǎo),對(duì)有理數(shù)除法法則及字母表示有了非常清楚的認(rèn)識(shí),教師放手讓學(xué)生總結(jié)法則,尤其是字母表示,訓(xùn)練學(xué)生的歸納及口頭表達(dá)能力.
。ㄈ﹪L試反饋,鞏固練習(xí)
師在黑板上出示例題.
計(jì)算(1)(-36)÷9, (2)÷.
學(xué)生嘗試做此題目.
。ǔ鍪就队3)
1.計(jì)算:
(1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;
(4)1÷(-9); (5)0÷(-8); (6)16÷(-3).
2.計(jì)算:
(1)÷; (2)(-6.5)÷0.13;
。3)÷; (4)÷(-1).
學(xué)生活動(dòng):1題讓學(xué)生搶答,教師用復(fù)合膠片顯示結(jié)果.2題在練習(xí)本上演示,兩個(gè)同學(xué)板演(教師訂正).
【教法說明】此組練習(xí)中兩個(gè)題目都是對(duì)的直接應(yīng)用.1題是整數(shù),利用口答形式訓(xùn)練學(xué)生速算能力.2題是小數(shù)、分?jǐn)?shù)略有難度,要求學(xué)生自行演算,加強(qiáng)運(yùn)算的準(zhǔn)確性,2題(2)小題必須把小數(shù)都化成分?jǐn)?shù)再轉(zhuǎn)化成乘法來計(jì)算.
提出問題:(1)兩數(shù)相除,商的符號(hào)怎樣確定,商的絕對(duì)值呢?(2)0不能做除數(shù),0做被除數(shù)時(shí)商是多少?
學(xué)生活動(dòng):分組討論,1—2個(gè)同學(xué)回答.
[板書]
2.兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除.
0除以任何不等于0的數(shù),都得0.
【教法說明】通過上組練習(xí)的結(jié)果,不難看出與有理數(shù)乘法有類似的法則,這個(gè)法則的得出為計(jì)算有理數(shù)除法又添了一種方法,這時(shí)教師要及時(shí)指出,在做有理數(shù)除法的題目時(shí),要根據(jù)具體情況,靈活運(yùn)用這兩種方法.
。ㄋ模┳兪接(xùn)練,培養(yǎng)能力
回顧例1 計(jì)算:(1)(-36)÷9; (2)÷.
提出問題:每個(gè)題目你想采用哪種法則計(jì)算更簡(jiǎn)單?
學(xué)生活動(dòng):(1)題采用兩數(shù)相除,異號(hào)得負(fù)并把絕對(duì)值相除的方法較簡(jiǎn)單.
。2)題仍用除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)較簡(jiǎn)單.
提出問題:-36:9=?;:=?它們都屬于除法運(yùn)算嗎?
學(xué)生活動(dòng):口答出答案.
(出示投影4)
例2 化簡(jiǎn)下列分?jǐn)?shù)
。1); (2); (3)或3:(-36)
。4); (5).
例3 計(jì)算
。1)÷(-6); (2)-3.5÷×;
(3)(-6)÷(-4)×.
學(xué)生活動(dòng):例2讓學(xué)生口答,例3全體同學(xué)獨(dú)立計(jì)算,三個(gè)學(xué)生板演.
【教法說明】例2是檢查學(xué)生對(duì)有理數(shù)除法法則的靈活運(yùn)用能力,并滲透了除法、分?jǐn)?shù)、比可互相轉(zhuǎn)化,并且通過這種轉(zhuǎn)化,常常可能簡(jiǎn)化計(jì)算.例3培養(yǎng)學(xué)生分析問題的能力,優(yōu)化學(xué)生思維品質(zhì):
如在(1)÷(-6)中.
根據(jù)方法①÷(-6)=×=.
根據(jù)方法②÷(-6)=(24+)×=4+=.
讓學(xué)生區(qū)分方法的差異,點(diǎn)明方法②非常簡(jiǎn)便,肯定當(dāng)除法轉(zhuǎn)化成乘法時(shí),可以利用有理數(shù)乘法運(yùn)算律簡(jiǎn)化運(yùn)算.(2)(3)小題也是如此.
。ㄎ澹w納小結(jié)
師:今天我們學(xué)習(xí)了及倒數(shù)的概念,回答問題:
1.的倒數(shù)是__________________;
2.;
3.若、同號(hào),則;
若、異號(hào),則;
若,時(shí),則;
學(xué)生活動(dòng):分組討論,三個(gè)學(xué)生口答.
【教法說明】對(duì)這節(jié)課全部知識(shí)點(diǎn)的回顧不是教師單純地總結(jié),而是讓學(xué)生在思考回答的過程中自己把整節(jié)內(nèi)容進(jìn)行了梳理,并且上升到了用字母表示的數(shù)學(xué)式子,逐步培養(yǎng)學(xué)生用數(shù)學(xué)語言表達(dá)數(shù)學(xué)規(guī)律的能力.
八、隨堂練習(xí)
1.填空題
。1)的倒數(shù)為__________,相反數(shù)為____________,絕對(duì)值為___________
(2)(-18)÷(-9)=_____________;
(3)÷(-2.5)=_____________;
。4);
。5)若,是;
。6)若、互為倒數(shù),則;
。7)或、互為相反數(shù)且,則,;
。8)當(dāng)時(shí),有意義;
。9)當(dāng)時(shí),;
(10)若,,則,和符號(hào)是_________,___________.
2.計(jì)算
(1)-4.5÷×;
(2)(-12)÷〔(-3)+(-15)〕÷(+5).
九、布置作業(yè)
。ㄒ唬┍刈鲱}:1.仿照例1、例2自編2道題,同桌交換解答.
2.計(jì)算:(1)×÷;
(2)-6÷(-0.25)×.
3.當(dāng),,時(shí)求的值.
。ǘ┻x做題:1.填空:用“>”“<”“=”號(hào)填空
(1)如果,則,;
。2)如果,則,;
。3)如果,則,;
。4)如果,則,;
2.判斷:正確的打“√”錯(cuò)的打“×”
。1)( );
。2)( ).
3.(1)倒數(shù)等于它本身的數(shù)是______________.
。2)互為相反數(shù)的數(shù)(0除外)商是________________.
【教法說明】必做題為本節(jié)的重點(diǎn)內(nèi)容,首先在這節(jié)課學(xué)習(xí)的基礎(chǔ)上讓同學(xué)仿照例題編題,學(xué)生也有這方面的能力,極大調(diào)動(dòng)了學(xué)生積極性,提高了學(xué)生運(yùn)用知識(shí)的能力.
選作題是對(duì)這節(jié)課重點(diǎn)內(nèi)容的進(jìn)一步理解和運(yùn)用,為學(xué)有余力的學(xué)生提供了展示自己的機(jī)會(huì).
十、板書設(shè)計(jì)
《有理數(shù)的除法》教案 篇13
本次說課我共分成教材分析、教學(xué)方法與手段、教學(xué)過程分析和幾點(diǎn)思考四部分,具體內(nèi)容如下:
一、教材分析:
(一)教材的地位和作用:本節(jié)課的內(nèi)容是《新人教版七年級(jí)數(shù)學(xué)》教材中的第一章第四節(jié), “有理數(shù)的乘除法”是把“有理數(shù)乘法”和“有理數(shù)除法”的內(nèi)容進(jìn)行整合,在“有理數(shù)的加減混合運(yùn)算”之后的一個(gè)學(xué)習(xí)內(nèi)容。在本章教材的編排中,“有理數(shù)的乘法”起著承上啟下的作用,它既是有理數(shù)加減的深入學(xué)習(xí),又是有理數(shù)除法、有理數(shù)乘方的基礎(chǔ),在有理數(shù)運(yùn)算中有很重要的地位。“有理數(shù)的乘法”從具體情境入手,把乘法看做連加,通過類比,讓學(xué)生進(jìn)行充分討論、自主探索與合作交流的形式,自己歸納出有理數(shù)乘法法則。通過這個(gè)探索的過程,發(fā)展了學(xué)生觀察、歸納、猜測(cè)、驗(yàn)證的能力,使學(xué)生在學(xué)習(xí)的過程中獲得成功的體驗(yàn),增強(qiáng)了自信心。所以本節(jié)課的學(xué)習(xí)具有一定的現(xiàn)實(shí)地位。
(二)學(xué)情分析:因?yàn)閷W(xué)生在小學(xué)的學(xué)習(xí)里已經(jīng)接觸過正數(shù)和0的乘除法,對(duì)于兩個(gè)正數(shù)相乘、正數(shù)與0相乘、兩個(gè)正數(shù)相除、0與正數(shù)相除的情況學(xué)生已經(jīng)掌握。同時(shí)由于前面學(xué)習(xí)了有理數(shù)的加減法運(yùn)算,學(xué)生對(duì)負(fù)數(shù)參與運(yùn)算有了一定的認(rèn)識(shí),但仍還有一定的困難。另外,經(jīng)過前一階段的教學(xué),學(xué)生對(duì)數(shù)學(xué)問題的研究方法有了一定的了解,課堂上合作交流也做得相對(duì)較好。
(三)教學(xué)目標(biāo)分析:基于以上的學(xué)情分析,我確定本節(jié)課的教學(xué)目標(biāo)如下
1、知識(shí)目標(biāo):讓學(xué)生經(jīng)歷學(xué)習(xí)過程,探索歸納得出有理數(shù)的乘除法法則,并能熟練運(yùn)用。
2、能力目標(biāo):在課堂學(xué)習(xí)過程中,使學(xué)生經(jīng)歷探索有理數(shù)乘除法法則的過程,發(fā)展觀察、猜想、歸納、驗(yàn)證、運(yùn)算的能力,同時(shí)在探索法則的過程中培養(yǎng)學(xué)生分類和歸納的數(shù)學(xué)思想。
3、情感態(tài)度和價(jià)值觀:在探索過程中尊重學(xué)生的學(xué)習(xí)態(tài)度,樹立學(xué)生學(xué)習(xí)數(shù)學(xué)的自信心,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)思維習(xí)慣。
4、教學(xué)重點(diǎn):會(huì)進(jìn)行有理數(shù)的乘除法運(yùn)算。
5、教學(xué)難點(diǎn):有理數(shù)乘除法法則的探索與運(yùn)用。
確定教學(xué)目標(biāo)的理由依據(jù)是:新課標(biāo)中指出課堂教學(xué)中應(yīng)體現(xiàn)知識(shí)與技能、過程與方法、情感態(tài)度與價(jià)值觀的三維目標(biāo),同時(shí)也基于本節(jié)內(nèi)容的地位與作用。而確定重難點(diǎn)是根據(jù)新課標(biāo)的要求,結(jié)合學(xué)生的學(xué)情而確定的。
二、教學(xué)方法和手段:
根據(jù)本節(jié)課的內(nèi)容特點(diǎn)及學(xué)生的學(xué)情,我選擇的教學(xué)方法是引導(dǎo)探索、小組合作、效果反饋的教學(xué)方法。為了提高課堂的教學(xué)容量,增加實(shí)際問題的直觀性,我選用多媒體輔助教學(xué)手段。
關(guān)于學(xué)法:本節(jié)課里我主要指導(dǎo)學(xué)生采用了自主探索、合作交流、自我反思的學(xué)習(xí)方法,我想這樣更能有效的培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的能力,更好的培養(yǎng)學(xué)生數(shù)學(xué)地思考問題。
三、教學(xué)過程分析:
本課共6課時(shí),重點(diǎn)是有理數(shù)乘除法法則的教學(xué),下面我重點(diǎn)說有理數(shù)乘法法則的教學(xué)。整體的教學(xué)程序包括:情景創(chuàng)設(shè)、提出問題;引導(dǎo)探索、歸納結(jié)論;知識(shí)運(yùn)用、加深理解;變式練習(xí)、形成能力;回顧與反思、納入知識(shí)系統(tǒng);布置作業(yè);板書設(shè)計(jì)七部分。
四、幾點(diǎn)思考:
1、關(guān)于評(píng)價(jià):本節(jié)課我采用了教師評(píng)價(jià)、師生評(píng)價(jià)、生生評(píng)價(jià)的多種評(píng)價(jià)方式,同時(shí)在教學(xué)過程中我多表揚(yáng)學(xué)生的表現(xiàn),并采用鼓勵(lì)性的語言激勵(lì)學(xué)生思考回答。這樣有利于提高學(xué)生學(xué)習(xí)的積極性,幫助學(xué)生樹立信心。
2、關(guān)于課本的處理:本節(jié)課中我直接利用課本的實(shí)例來引入,主要是這樣的例子比較接近學(xué)生的實(shí)際生活,同時(shí)用圖片展示,可以使學(xué)生更好的理解,從而更好的突出本節(jié)課的重點(diǎn)。基于初一學(xué)生學(xué)習(xí)的特點(diǎn),為了突出本節(jié)課的重點(diǎn),更好的突破本節(jié)課的難點(diǎn),課本上多個(gè)有理數(shù)相乘時(shí)的符號(hào)法則我留到下節(jié)課來探究。
《有理數(shù)的除法》教案 篇14
一、說教材
1、教材的地位及作用。
有理數(shù)的運(yùn)算是本章的重點(diǎn),是學(xué)好后續(xù)內(nèi)容的重要前提。本節(jié)課是在學(xué)習(xí)了有理數(shù)乘法的基礎(chǔ)上進(jìn)行的,是熟練進(jìn)行有理數(shù)運(yùn)算的必備知識(shí),它與有理數(shù)的其它運(yùn) 算形成了一個(gè)完整的知識(shí)體系。整節(jié)內(nèi)容滲透了從一般到特殊、化未知到已知、用已知求新知的數(shù)學(xué)思想方法。通過本節(jié)學(xué)習(xí)讓學(xué)生感受數(shù)學(xué)學(xué)習(xí)的樂趣,體驗(yàn)數(shù)學(xué) 思維的力量,發(fā)展學(xué)生自主創(chuàng)新的意識(shí)。
2、教學(xué)目標(biāo)。
根據(jù)學(xué)生已有的認(rèn)知基礎(chǔ)及本課教材的地位及作用,依據(jù)課程標(biāo)準(zhǔn),我確定本節(jié)課的教學(xué)目標(biāo)為:
。1)知識(shí)技能方面:理解有理數(shù)除法的意義,熟練掌握有理數(shù)除法法則,會(huì)求有理數(shù)的倒數(shù),會(huì)進(jìn)行有理數(shù)的除法運(yùn)算。
。2)過程與方法方面:通過有理數(shù)除法法則的導(dǎo)出及運(yùn)算,讓學(xué)生體會(huì)轉(zhuǎn)化思想,感知數(shù)學(xué)知識(shí)的普遍性、相互轉(zhuǎn)化性。
。3)情感態(tài)度方面:通過生生合作,使學(xué)生體會(huì)在解決問題中與他人合作的重要性,通過積極參與教學(xué)活動(dòng),讓學(xué)生充分體驗(yàn)問題的探索過程,培養(yǎng)學(xué)生的探究意識(shí),激發(fā)學(xué)生學(xué)好數(shù)學(xué)的熱情。
3、教學(xué)重點(diǎn)、難點(diǎn)
在整個(gè)知識(shí)系統(tǒng)中,學(xué)生能夠熟練地進(jìn)行有理數(shù)的運(yùn)算是很重要的,因此本節(jié)課的教學(xué)重點(diǎn)確定為熟練進(jìn)行有理數(shù)的除法運(yùn)算。勤思、善思,是學(xué)好數(shù)學(xué)的必要條 件。本節(jié)內(nèi)容是在有理數(shù)乘法的基礎(chǔ)上進(jìn)行的,有理數(shù)的除法可以利用乘法進(jìn)行,基于此,教科書中給出了兩種法則,對(duì)初一學(xué)生來說,理解這兩種法則有一定的難 度,因此,本節(jié)課的教學(xué)難點(diǎn)定為:理解有理數(shù)的除法法則。
二、說教法
為了突出重點(diǎn)、突破難點(diǎn),使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我采用的教學(xué)方法是:
針對(duì)初一學(xué)生的思維依賴性強(qiáng),思維活躍,但抽象概括能力相對(duì)較弱的特點(diǎn),本節(jié)課充分借助多媒體來增強(qiáng)直觀效果。運(yùn)用“自學(xué)—輔導(dǎo)”模式,遵循“面向全體, 尊重主體”的教學(xué)理念,采用“先學(xué)后教,當(dāng)堂訓(xùn)練”的課堂教學(xué)結(jié)構(gòu),把教學(xué)過程化為學(xué)生自學(xué)、大膽猜想、合作交流、歸納總結(jié)的過程,使課堂教學(xué)遵循從生 動(dòng)、直觀到抽象思維的認(rèn)識(shí)規(guī)律。
三、說學(xué)法
在教學(xué)活動(dòng)中,為了激發(fā)學(xué)生自主學(xué)習(xí),真正做到課堂教學(xué)面向全體學(xué)生,在教師的組織引導(dǎo)下,采用自主探究、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題、獲取知識(shí)、掌握方法,從而培養(yǎng)學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦的能力,成為學(xué)習(xí)的真正主人。
四、教學(xué)過程設(shè)計(jì)
1、設(shè)計(jì)問題,導(dǎo)入課題,提出課堂教學(xué)目標(biāo)。
本著設(shè)計(jì)問題要有啟發(fā)性、探索性的原則,首先出示了學(xué)生熟知的問題8÷(-4)=?也就是說(-4)x?=8
得出(-4)x(-2)=8所以8÷(-4)=-2而我們知道8x(-1/4)=-2所以8÷(-4)=8x(-1/4)
2、指導(dǎo)學(xué)生自學(xué)。
課件揭示自學(xué)指導(dǎo)
。1)閱讀教材第34頁內(nèi)容;
。2)小組討論疑難問題。這樣做的目的是:讓學(xué)生帶著明確的任務(wù),掌握恰當(dāng)?shù)淖詫W(xué)方法,從而使自學(xué)更有效,與此同時(shí),堅(jiān)持每次自學(xué)前給予方法指導(dǎo),可以使學(xué)生積累自學(xué)方法,從而提高學(xué)生的自學(xué)能力。
3、學(xué)生自學(xué),教師巡視。
學(xué)生根據(jù)自學(xué)指導(dǎo)開始自學(xué),通過察言觀色,了解學(xué)生自學(xué)情況,使每個(gè)學(xué)生都積極動(dòng)腦,認(rèn)真學(xué)習(xí),從而挖掘每個(gè)學(xué)生的潛力。在這個(gè)過程中,我會(huì)重點(diǎn)巡視中差的學(xué)生,幫助他們端正學(xué)習(xí)態(tài)度。
4、檢查自學(xué)效果。
課件展示與例題類似的習(xí)題,讓后進(jìn)生板演或回答,要面向全體學(xué)生,后進(jìn)生回答或板演時(shí),要照顧到全體同學(xué),讓他們聆聽別人回答問題,隨時(shí)準(zhǔn)備糾正錯(cuò)誤,通 過巡視,搜集學(xué)生存在的錯(cuò)誤,并在頭腦里分類,哪些屬于新知方面的,哪些屬于舊知遺忘或粗心大意的,把傾向性的錯(cuò)誤用彩色粉筆寫在黑板對(duì)應(yīng)練習(xí)處,供講評(píng) 時(shí)用。通過這個(gè)過程,培養(yǎng)學(xué)生分析問題和解決問題以及學(xué)已致用的能力。
5、引導(dǎo)學(xué)生更正,指導(dǎo)學(xué)生運(yùn)用。
學(xué)生觀察板演,找出錯(cuò)誤或比較與自己做的方法,結(jié)果是否與板演的相同,學(xué)生自由更正,讓他們各抒己見,小組討論,說出錯(cuò)因,更正的道理,引導(dǎo)學(xué)生歸納,上 升為理論,指導(dǎo)以后的學(xué)習(xí)。這個(gè)過程既是幫助后進(jìn)生解決疑難問題,又通過糾正錯(cuò)誤,訓(xùn)練一題多解,使優(yōu)等生了解更加透徹,訓(xùn)練他們的求異思維和創(chuàng)新思維, 培養(yǎng)了他們的創(chuàng)新精神和一題多解的能力。同時(shí),在這個(gè)過程中,要引導(dǎo)學(xué)生尋找規(guī)律,幫助學(xué)生歸納上升為理論,引導(dǎo)學(xué)生找出運(yùn)用時(shí)可能出現(xiàn)的錯(cuò)誤,這是從理 論到理論架起一座橋梁,以免學(xué)生走彎路。
6、當(dāng)堂訓(xùn)練。
為學(xué)生鞏固知識(shí),加深理解,我給出一組練習(xí),這組題目,分三個(gè)梯度:法則的直接運(yùn)用、有理數(shù)的除法運(yùn)算、解決實(shí)際問題,而且把這些題分為必做題、選做題。 通過完成課堂作業(yè),檢測(cè)每一位學(xué)生是否都能當(dāng)堂達(dá)到學(xué)習(xí)目的。在這個(gè)過程中,我會(huì)不斷巡視,了解哪些同學(xué)真正做到了“堂堂清”,哪些同學(xué)課后需要“開小 灶”,使課外輔導(dǎo)要有針對(duì)性。
7、反思小結(jié),觀點(diǎn)提煉。
通過前六個(gè)環(huán)節(jié),學(xué)生已對(duì)本節(jié)課所學(xué)的內(nèi)容有了較深刻的理解和掌握,引導(dǎo)學(xué)生進(jìn)行反思,整理知識(shí),總結(jié)規(guī)律,提煉思想方法。讓學(xué)生從多角度對(duì)本節(jié)課歸納總結(jié)、感悟點(diǎn)滴,使學(xué)生將知識(shí)系統(tǒng)化,提高學(xué)生素質(zhì),鍛煉學(xué)生的綜合及表達(dá)能力。
8、布置作業(yè)。
課本38頁四題讓學(xué)生做到作業(yè)本上,以考查學(xué)生對(duì)本節(jié)基本方法和基本技能的掌握情況。
五、兩點(diǎn)說明。
。ㄒ唬、板書設(shè)計(jì)
這節(jié)課的板書我是這樣設(shè)計(jì)的,在黑板的正上方中間處寫明課題,然后把板書分為左右兩部分,左邊是有理數(shù)除法的法則,為了培養(yǎng)學(xué)生把文字語言轉(zhuǎn)化成符號(hào)語言 的能力,板書中只出現(xiàn)兩種法則的符號(hào)表示,從而加深他們對(duì)法則的理解,板書右邊是學(xué)生的板演,以便于比較他們做題中出現(xiàn)的問題。板書下方是課堂小結(jié),重點(diǎn) 寫出:有理數(shù)的除法可以轉(zhuǎn)化成有理數(shù)的乘法,以體現(xiàn)本節(jié)課中的重要的數(shù)學(xué)思想方法。
有理數(shù)的除法
有理數(shù)除法的法則:a÷b=a×1/b(b≠0) 板演練習(xí):
1
a>0,b>0,a/b>0;a<0,b<0,a b="">0; 2
a>0,b<0,a/b<0;a<0,b>0,a/b<0. 3
課堂小結(jié):有理數(shù)的除法 有理數(shù)的乘法
轉(zhuǎn)化
(二)、時(shí)間分配:
教學(xué)過程中的八個(gè)環(huán)節(jié)所需的時(shí)間分別為:1分鐘、2分鐘、5分鐘、8分鐘、8分鐘、16分鐘、2分鐘、1分鐘。