最近中文字幕完整版高清,宅男宅女精品国产av天堂,亚洲欧美日韩综合一区二区,最新色国产精品精品视频,中文字幕日韩欧美就去鲁

首頁(yè) > 教案下載 > 7.2解二元一次方程組(精選13篇)

7.2解二元一次方程組

發(fā)布時(shí)間:2022-11-08

7.2解二元一次方程組(精選13篇)

7.2解二元一次方程組 篇1

  一.教學(xué)目標(biāo)(一)教學(xué)知識(shí)點(diǎn)1.代入消元法解二元一次方程組.2.解二元一次方程組時(shí)的“消元”思想,“化未知為已知”的化歸思想.(二)能力訓(xùn)練要求1.會(huì)用代入消元法解二元一次方程組.2.了解解二元一次方程組的“消元”思想,初步體會(huì)數(shù)學(xué)研究中“化未知為已知”的化歸思想.(三)情感與價(jià)值觀要求1.在學(xué)生了解二元一次方程組的“消元”思想,從而初步理解化“未知”為“已知”和化復(fù)雜問(wèn)題為簡(jiǎn)單問(wèn)題的化歸思想中,享受學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,提高學(xué)習(xí)數(shù)學(xué)的信心.2.培養(yǎng)學(xué)生合作交流,自主探索的良好習(xí)慣.二.教學(xué)重點(diǎn)1.會(huì)用代入消元法解二元一次方程組.2.了解解二元一次方程組的“消元”思想,初步體現(xiàn)數(shù)學(xué)研究中“化未知為已知”的化歸思想.三.教學(xué)難點(diǎn)1.“消元”的思想.2.“化未知為已知”的化歸思想.四.教學(xué)方法啟發(fā)——自主探索相結(jié)合.教師引導(dǎo)學(xué)生回憶一元一次方程解決實(shí)際問(wèn)題的方法并從中啟發(fā)學(xué)生如果能將二元一次方程組轉(zhuǎn)化為一元一次方程.二元一次方程便可獲解,從而通過(guò)學(xué)生自主探索總結(jié)用代入消元法解二元一次方程組的步驟.五.教具準(zhǔn)備投影片兩張:第一張:例題(記作§7.2 a);第二張:?jiǎn)栴}串(記作§7.2 b).六.教學(xué)過(guò)程ⅰ.提出疑問(wèn),引入新課[師生共憶]上節(jié)課我們討論過(guò)一個(gè)“希望工程”義演的問(wèn)題;沒(méi)去觀看義演的成人有x個(gè),兒童有y個(gè),我們得到了方程組 成人和兒童到底去了多少人呢?[生]在上一節(jié)課的“做一做”中,我們通過(guò)檢驗(yàn) 是不是方程x+y=8和方程5x+3y=34,得知這個(gè)解既是x+y=8的解,也是5x+3y=34的解,根據(jù)二元一次方程組解的定義得出 是方程組 的解.所以成人和兒童分別去了5個(gè)人和3個(gè)人.[師]但是,這個(gè)解是試出來(lái)的.我們知道二元一次方程的解有無(wú)數(shù)個(gè).難道我們每個(gè)方程組的解都去這樣試?[生]太麻煩啦.[生]不可能.[師]這就需要我們學(xué)習(xí)二元一次方程組的解法.ⅱ.講授新課[師]在七年級(jí)第一學(xué)期我們學(xué)過(guò)一元一次方程,也曾碰到過(guò)“希望工程”義演問(wèn)題,當(dāng)時(shí)是如何解的呢?[生]解:設(shè)成人去了x個(gè),兒童去了(8-x)個(gè),根據(jù)題意,得:5x+3(8-x)=34解得x=5將x=5代入8-x=8-5=3答:成人去了5個(gè),兒童去了3個(gè).[師]同學(xué)們可以比較一下:列二元一次方程組和列一元一次方程設(shè)未知數(shù)有何不同?列出的方程和方程組又有何聯(lián)系?對(duì)你解二元一次方程組有何啟示?[生]列二元一次方程組設(shè)出有兩個(gè)未知數(shù)成人去了x個(gè),兒童去了y個(gè).列一元一次方程設(shè)成人去了x個(gè),兒童去了(8-x)個(gè).y應(yīng)該等于(8-x).而由二元一次方程組的一個(gè)方程x+y=8根據(jù)等式的性質(zhì)可以推出y=8-x.[生]我還發(fā)現(xiàn)一元一次方程中5x+3(8-x)=34與方程組中的第二個(gè)方程5x+3y=34相比較,把5x+3y=34中的“y”用“8-x”代替就轉(zhuǎn)化成了一元一次方程.[師]太好了.我們發(fā)現(xiàn)了新舊知識(shí)之間的聯(lián)系,便可尋求到解決新問(wèn)題的方法——即將新知識(shí)轉(zhuǎn)化為舊知識(shí)便可.如何轉(zhuǎn)化呢?[生]上一節(jié)課我們就已知道方程組的兩個(gè)未知數(shù)所包含的意義是相同的.所以將         中的①變形,得y=8-x  ③我們把y=8-x代入方程②,即將②中的y用8-x代替,這樣就有5x+3(8-x)=34.“二元”化成“一元”.[師]這位同學(xué)很善于思考.他用了我們?cè)跀?shù)學(xué)研究中“化未知為已知”的化歸思想,從而使問(wèn)題得到解決.下面我們完整地解一下這個(gè)二元一次方程組.解: 由①得  y=8-x  ③將③代入②得5x+3(8-x)=34解得x=5把x=5代入③得y=3.所以原方程組的解為 下面我們?cè)囍眠@種方法來(lái)解答上一節(jié)的“誰(shuí)的包裹多”的問(wèn)題.[師生共析]解二元一次方程組: 分析:我們解二元一次方程組的第一步需將其中的一個(gè)方程變形用含一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù),把表示了的未知數(shù)代入未變形的方程中,從而將二元一次方程組轉(zhuǎn)化為一元一次方程.解:由①得x=2+y  ③將③代入②得(2+y)+1=2(y-1)解得y=5把y=5代入③,得x=7.所以原方程組的解為 即老牛馱了7個(gè)包裹,小馬馱了5個(gè)包裹.[師]在解上面兩個(gè)二元一次方程組時(shí),我們都是將其中的一個(gè)方程變形,即用其中一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù),然后代入第二個(gè)未變形的方程,從而由“二元”轉(zhuǎn)化為“一元”而得到消元的目的.我們將這種方法叫代入消元法.這種解二元一次方程組的思想為消元思想.我們?cè)賮?lái)看兩個(gè)例子.出示投影片(§7.2 a)[例題]解方程組(1) (2) (由學(xué)生自己完成,兩個(gè)同學(xué)板演).解:(1)將②代入①,得3× +2y=83y+9+4y=167y=7y=1將y=1代入②,得x=2所以原方程組的解是 (2)由②,得x=13-4y  ③將③代入①,得2(13-4y)+3y=16-5y=-10y=2將y=2代入③,得x=5所以原方程組的解是 [師]下面我們來(lái)討論幾個(gè)問(wèn)題:出示投影片(§7.2 b)(1)上面解方程組的基本思路是什么?(2)主要步驟有哪些?(3)我們觀察例1和例2的解法會(huì)發(fā)現(xiàn),我們?cè)诮夥匠探M之前,首先要觀察方程組中未知數(shù)的特點(diǎn),盡可能地選擇變形后的方程較簡(jiǎn)單和代入后化簡(jiǎn)比較容易的方程變形,這是關(guān)鍵的一步.你認(rèn)為選擇未知數(shù)有何特點(diǎn)的方程變形好呢?(由學(xué)生分組討論,教師深入?yún)⑴c到學(xué)生討論中,發(fā)現(xiàn)學(xué)生在自主探索、討論過(guò)程中的獨(dú)特想法)[生]我來(lái)回答第一問(wèn):解二元一次方程組的基本思路是消元,把“二元”變?yōu)椤耙辉?[生]我們組總結(jié)了一下解上述方程組的步驟:第一步:在已知方程組的兩個(gè)方程中選擇一個(gè)適當(dāng)?shù)姆匠,把它變形為用一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù).第二步:把表示另一個(gè)未知數(shù)的代數(shù)式代入沒(méi)有變形的另一個(gè)方程,可得一個(gè)一元一次方程.第三步:解這個(gè)一元一次方程,得到一個(gè)未知數(shù)的值.第四步:把求得的未知數(shù)的值代回到原方程組中的任意一個(gè)方程或變形后的方程(一般代入變形后的方程),求得另一個(gè)未知數(shù)的值.第五步:用“{”把原方程組的解表示出來(lái).第六步:檢驗(yàn)(口算或筆算在草稿紙上進(jìn)行)把求得的解代入每一個(gè)方程看是否成立.[師]這個(gè)組的同學(xué)總結(jié)的步驟真棒,甚至連我們平時(shí)容易忽略的檢驗(yàn)問(wèn)題也提了出來(lái),很值得提倡.在我們數(shù)學(xué)學(xué)習(xí)的過(guò)程中,應(yīng)該養(yǎng)成反思自己解答過(guò)程,檢驗(yàn)自己答案正確與否的習(xí)慣.[生]老師,我代表我們組來(lái)回答第三個(gè)問(wèn)題.我們認(rèn)為用代入消元法解二元一次方程組時(shí),盡量選取一個(gè)未知數(shù)的分?jǐn)?shù)是1的方程進(jìn)行變形;若未知數(shù)的系數(shù)都不是1,則選取系數(shù)的絕對(duì)值較小的方程變形.但我們也有一個(gè)問(wèn)題要問(wèn):在例2中,我們選擇②變形這是無(wú)可厚非的,把②變形后代入①中消元得到的是一元一次方程系數(shù)都為整數(shù)也較簡(jiǎn)便.可例1中,雖然可直接把②代入①中消去x,可得到的是含有分母的一元一次方程,并不簡(jiǎn)便,有沒(méi)有更簡(jiǎn)捷的方法呢?[師]這個(gè)問(wèn)題提的太好了.下面同學(xué)們分組討論一下.如果你發(fā)現(xiàn)了更好的解法,請(qǐng)把你的解答過(guò)程寫到黑板上來(lái).[生]解:由②得2x=y+3  ③③兩邊同時(shí)乘以2,得4x=2y+6  ④由④得2y=4x-6把⑤代入①得3x+(4x-6)=8解得7x=14,x=2把x=2代入③得y=1.所以原方程組的解為 [師]真了不起,能把我們所學(xué)的知識(shí)靈活應(yīng)用,而且不拘一格,將“2y”整體上看作一個(gè)未知數(shù)代入方程①,這是一個(gè)“科學(xué)的發(fā)明”.ⅲ.隨堂練習(xí)課本p1921.用代入消元法解下列方程組解:(1) 將①代入②,得x+2x=12x=4.把x=4代入①,得y=8所以原方程組的解為 (2) 將①代入②,得4x+3(2x+5)=65解得x=5把x=5代入①得y=15所以原方程組的解為 (3) 由①,得x=11-y  ③把③代入②,得11-y-y=7y=2把y=2代入③,得x=9所以原方程組的解為 (4) 由②,得x=3-2y  ③把③代入①,得3(3-2y)-2y=9得y=0把y=0代入③,得x=3所以原方程組的解為 注:在隨堂練習(xí)中,可以鼓勵(lì)學(xué)生通過(guò)自主探索與交流,各個(gè)學(xué)生消元的具體方法可能不同,不必強(qiáng)調(diào)解答過(guò)程統(tǒng)一.ⅳ.課時(shí)小結(jié)這節(jié)課我們介紹了二元一次方程組的第一種解法——代入消元法.了解到了解二元一次方程組的基本思路是“消元”即把“二元”變?yōu)椤耙辉?主要步驟是:將其中的一個(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來(lái),并代入另一個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程.解這個(gè)一元一次方程,便可得到一個(gè)未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對(duì)未知數(shù)的值.即求得了方程的解.ⅴ.課后作業(yè)1.課本習(xí)題7.22.解答習(xí)題7.2第3題ⅵ.活動(dòng)與探究已知代數(shù)式x2+px+q,當(dāng)x=-1時(shí),它的值是-5;當(dāng)x=-2時(shí),它的值是4,求p、q的值.過(guò)程:根據(jù)代數(shù)式值的意義,可得兩個(gè)未知數(shù)都是p、q的方程,即當(dāng)x=-1時(shí),代數(shù)式的值是-5,得(-1)2+(-1)p+q=-5         ①當(dāng)x=-2時(shí),代數(shù)式的值是4,得(-2)2+(-2)p+q=4       ②將①、②兩個(gè)方程整理,并組成方程組 解方程組,便可解決.結(jié)果:由④得q=2p把q=2p代入③,得-p+2p=-6解得p=-6把p=-6代入q=2p=-12所以p、q的值分別為-6、-12.七.板書設(shè)計(jì)

  §7.2  解二元一次方程組(一)一、“希望工程”義演二、“誰(shuí)的包裹多”問(wèn)題三、例題四、解方程組的基本思路:消元即二元—→一元五、解二元一次方程組的基本步驟

7.2解二元一次方程組 篇2

  10.3  解二元一次方程組(二)教學(xué)目標(biāo):1. 會(huì)用加減消元法解二元一次方程組.2. 能根據(jù)方程組的特點(diǎn),適當(dāng)選用代入消元法和加減消元法解二元一次方程組.3. 了解解二元一次方程組的消元方法,經(jīng)歷從“二元”到“一元”的轉(zhuǎn)化過(guò)程,體會(huì)解二元一次方程組中化“未知”為“已知”的“轉(zhuǎn)化”的思想方法.教學(xué)重點(diǎn):加減消元法的理解與掌握教學(xué)難點(diǎn):加減消元法的靈活運(yùn)用教學(xué)方法:引導(dǎo)探索法,學(xué)生討論交流教學(xué)過(guò)程:一、情境創(chuàng)設(shè)買3瓶蘋果汁和2瓶橙汁共需要23元,買5瓶蘋果汁和2瓶橙汁共需33元,每瓶蘋果汁和每瓶橙汁售價(jià)各是多少?設(shè)蘋果汁、橙汁單價(jià)為x元,y元.我們可以列出方程     3x+2y=23                         5x+2y=33問(wèn):如何解這個(gè)方程組?二、探索活動(dòng)活動(dòng)一:1、上面“情境創(chuàng)設(shè)”中的方程,除了用代入消元法解以外,還有其他方法求解嗎?2、這些方法與代入消元法有何異同?3、這個(gè)方程組有何特點(diǎn)?解法一:  3x+2y=23①          5x+2y=33②由①式得 ③把③式代入②式33解這個(gè)方程得:       y=4把y=4代入③式則  所以原方程組的解是     x=5y=4解法二:  3x+2y=23①          5x+2y=33②由①—②式:3x+2y-(5x+2y)=23-333x-5x=-10解這個(gè)方程得:      x=5把x=5代入①式,3×5+2y=23解這個(gè)方程得        y=4            所以原方程組的解是    x=5y=4    把方程組的兩個(gè)方程(或先作適當(dāng)變形)相加或相減,消去其中一個(gè)未知數(shù),把解二元一次方程組轉(zhuǎn)化為解一元一次方程,這種解方程組的方法叫做加減消元法(elimination by addition or subtraction) ,簡(jiǎn)稱加減法.三、例題教學(xué):例1.解方程組     x+2y=1①                  3x-2y=5②解:①+②得,4x=6                         將 代入①,得解這個(gè)方程得:    所以原方程組的解是                             鞏固練習(xí)(一):練一練   1.(1)例2.解方程組   5x-2y=4①                  2x-3y=-5②解:①×3,得15x-6y=12③②×3,得4x-6y=-10 ④③—④,得:                      11x=22        解這個(gè)方程得    x=2將x=2代入①,得5×2-2y=4解這個(gè)方程得:      y=3所以原方程組的解是     x=2y=3鞏固練習(xí)(二):練一練   1.(2)  (3)  (4)  2.四、思維拓展:解方程組:    五、小結(jié):1、掌握加減消元法解二元一次方程組2、靈活選用代入消元法和加減消元法解二元一次方程組六、作業(yè)習(xí)題10.3   1.(3) (4)  2.

7.2解二元一次方程組 篇3

  教學(xué)目標(biāo):1. 能熟練地用代入消元法解簡(jiǎn)單的二元一次方程組2. 從解方程的過(guò)程中體會(huì)轉(zhuǎn)化的思想方法教學(xué)重點(diǎn):用代入消元法解二元一次方程組教學(xué)難點(diǎn):用含有一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)教學(xué)過(guò)程:一、情境創(chuàng)設(shè)根據(jù)籃球比賽規(guī)則;贏一場(chǎng)得2分,平一場(chǎng)得1分,在某次中學(xué)籃球聯(lián)賽中,某球隊(duì)賽了12場(chǎng),贏了x場(chǎng),輸了y場(chǎng),共各20分.可以得出方程組:  x+y=12                  2x+y=20(學(xué)生思考,列出方程)二、新課講授如何解上面的二元一次方程組呢?  x+y=12  ①2x+y=20 ②(學(xué)生主動(dòng)探索,嘗試,體會(huì)消元的方法)解:由①得:y=12-x ③將③ 代入②得: 2x+12x-x=20解這個(gè)二元一次方程,得x=8將x=8代入③,得y=4所以原方程組的解是  x=8y=4注:①二元一次方程組的解是一對(duì)數(shù)值,而不是一個(gè)單純的x值或y值.②算出結(jié)果后要做心算檢驗(yàn),以養(yǎng)成習(xí)慣問(wèn)題:(引導(dǎo)思維拓展)①你是如何解方程組的?②每一步的依據(jù)是什么?③還有其它的方法嗎?(能否通過(guò)消去x解方程?)代入消元法:將方程組的一個(gè)方程中的某個(gè)未知數(shù)據(jù)用含有另一個(gè)未知數(shù)的代數(shù)式表示,并代入另一個(gè)方程,從而消去一個(gè)未知數(shù),把解二元一次方程轉(zhuǎn)化為解一元一次方程,這種解方程組的方法,稱為代入消元法,簡(jiǎn)稱代入法.(學(xué)生歸納、總結(jié)、并理解)點(diǎn)評(píng):用代入消元法解二元一次方程組方法不唯一,比如:上題中也可以用y來(lái)表示x,通過(guò)消去x 來(lái)解方程.即:由①得:x=12-y……③,將③代入②得……即使用x來(lái)表示y,方法也不是唯一的,可以由①得y=12-x,也可以由②得y=20-2x……三、例題教學(xué):解方程組  x+3y=0              3x+2y=92(板書示范,學(xué)生思考回答)步驟1.用一個(gè)未知數(shù)表示另一個(gè)未知數(shù);2.將表示后的未知數(shù)代入方程;3.解此方程4.求方程組的一對(duì)解.四、學(xué)生練習(xí)p110 1、2、3(學(xué)生板演)五、拓展延伸1.解方程組   3x=1-2y3x+4y=-7(整體代入法)2.已知  x+y=k             2x+3y=k六、課時(shí)小結(jié):1. 用代入法解二元一次方程組的步驟?2. 任意一個(gè)二元一次方程都能用代入消元法解嗎?舉例說(shuō)明.七、作業(yè)p112  1、(1)(4)   2、3、

7.2解二元一次方程組 篇4

  教學(xué)建議

  一、重點(diǎn)、難點(diǎn)分析

  本節(jié)的教學(xué)重點(diǎn)是使學(xué)生學(xué)會(huì)用代入法.教學(xué)難點(diǎn) 在于靈活運(yùn)用代入法,這要通過(guò)一定數(shù)量的練習(xí)來(lái)解決;另一個(gè)難點(diǎn)在于用代入法求出一個(gè)未知數(shù)的值后,不知道應(yīng)把它代入哪一個(gè)方程求另一個(gè)未知數(shù)的值比較簡(jiǎn)便.

  解二元一次方程組的關(guān)鍵在于消元,即將“二元”轉(zhuǎn)化為“一元”.我們是通過(guò)等量代換的方法,消去一個(gè)未知數(shù),從而求得原方程組的解.

  二、知識(shí)結(jié)構(gòu)

  三、教法建議

  1.關(guān)于檢驗(yàn)方程組的解的問(wèn)題.教材指出:“檢驗(yàn)時(shí),需將所求得的一對(duì)未知數(shù)的值分別代入原方程組里的每一個(gè)方程中,看看方程的左、右兩邊是不是相等.”教學(xué)時(shí)要強(qiáng)調(diào)“原方程組”和“每一個(gè)”這兩點(diǎn).檢驗(yàn)的作用,一是使學(xué)生進(jìn)一步明確代入法是求方程組的解的一種基本方法,通過(guò)代入消元的確可以求得方程組的解二是進(jìn)一步鞏固二元一次方程組的解的概念,強(qiáng)調(diào)

  這一對(duì)數(shù)值才是原方程組的解,并且它們必須使兩個(gè)方程左、右兩邊的值都相等;三是因?yàn)槲覀儧](méi)有用方程組的同解原理而是用代換(等式的傳遞)來(lái)解方程組的,所以有必要檢驗(yàn)求出來(lái)的這一對(duì)數(shù)值是不是原方程組的解;四是為了杜絕變形和計(jì)算時(shí)發(fā)生的錯(cuò)誤.檢驗(yàn)可以口算或在草稿紙上演算,教科書中沒(méi)有寫出.

  2.教學(xué)時(shí),應(yīng)結(jié)合具體的例子指出這里解二元一次方程組的關(guān)鍵在于消元,即把“二元”轉(zhuǎn)化為“一元”.我們是通過(guò)等量代換的方法,消去一個(gè)未知數(shù),從而求得原方程組的解.早一些指出消元思想和把“二元”轉(zhuǎn)化為“一元”的方法,這樣,學(xué)生就能有較強(qiáng)的目的性.

  3.教師講解例題時(shí)要注意由簡(jiǎn)到繁,由易到難,逐步加深.隨著例題由簡(jiǎn)到繁,由易到難,要特別強(qiáng)調(diào)解方程組時(shí)應(yīng)努力使變形后的方程比較簡(jiǎn)單和代入后化簡(jiǎn)比較容易.這樣不僅可以求解迅速,而且可以減少錯(cuò)誤.

  一、素質(zhì)教育目標(biāo)

 。ㄒ唬┲R(shí)教學(xué)點(diǎn)

  1.掌握的步驟.

  2.熟練運(yùn)用代入法解簡(jiǎn)單的二元一次方程組.

  (二)能力訓(xùn)練點(diǎn)

  1.培養(yǎng)學(xué)生的分析能力,能迅速在所給的二元一次方程組中,選擇一個(gè)系數(shù)較簡(jiǎn)單的方程進(jìn)行變形.

  2.訓(xùn)練學(xué)生的運(yùn)算技巧,養(yǎng)成檢驗(yàn)的習(xí)慣.

  (三)德育滲透點(diǎn)

  消元,化未知為已知的數(shù)學(xué)思想.

 。ㄋ模┟烙凉B透點(diǎn)

  通過(guò)本節(jié)課的學(xué)習(xí),滲透化歸的數(shù)學(xué)美,以及方程組的解所體現(xiàn)出來(lái)的奇異的數(shù)學(xué)美.

  二、學(xué)法引導(dǎo)

  1.教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、練習(xí)法,嘗試指導(dǎo)法.

  2.學(xué)生學(xué)法:在前面已經(jīng)學(xué)過(guò)一元一次方程的解法,求二元一次方程組的解關(guān)鍵是化二元方程為一元方程,故在求解過(guò)程中始終應(yīng)抓住消元的思想方法.

  三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

  (-)重點(diǎn)

  使學(xué)生會(huì).

 。ǘ╇y點(diǎn)

  靈活運(yùn)用代入法的技巧.

  (三)疑點(diǎn)

  如何“消元”,把“二元”轉(zhuǎn)化為“一元”.

 。ㄋ模┙鉀Q辦法

  一方面復(fù)習(xí)用一個(gè)未知量表示另一個(gè)未知量的方法,另一方面學(xué)會(huì)選擇用一個(gè)系數(shù)較簡(jiǎn)單的方程進(jìn)行變形:

  四、課時(shí)安排

  一課時(shí).

  五、教具學(xué)具準(zhǔn)備

  電腦或投影儀、自制膠片.

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  1.教師設(shè)問(wèn)怎樣用一個(gè)未知量表示另一個(gè)未知量,并比較哪種表示形式更簡(jiǎn)單,如 等.

  2.通過(guò)課本中香蕉、蘋果的應(yīng)用問(wèn)題,引導(dǎo)學(xué)生列出一元一次方程或二元一次方程組,并通過(guò)比較、嘗試,探索出化二元為一元的解方程組的方法.

  3.再通過(guò)比較、嘗試,探索出選一個(gè)系數(shù)較簡(jiǎn)單的方程變形,通過(guò)代入法求方程組解的辦法更簡(jiǎn)便,并尋找出求解的規(guī)律.

  七、教學(xué)步驟 

 。ǎ┟鞔_目標(biāo)

  本節(jié)課我們將學(xué)習(xí)用代入法求二元一次方程組的解.

 。ǘ┱w感知

  從復(fù)習(xí)用一個(gè)未知量表達(dá)另一個(gè)未知量的方法,從而導(dǎo)入  運(yùn)用代入法化二元為一元方程的求解過(guò)程,即利用代入消元法求二元一次方程組的解的辦法.

 。ㄈ┙虒W(xué)步驟 

  1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入  

 。1)已知方程 ,先用含 的代數(shù)式表示 ,再用含 的代數(shù)式表示 .并比較哪一種形式比較簡(jiǎn)單.

 。2)選擇題:

  二元一次方程組 的解是

  A. B. C. D.

  【教法說(shuō)明】 第(1)題為打下基礎(chǔ);第(2)題既復(fù)習(xí)了上節(jié)課的重點(diǎn),又成為導(dǎo)入  新課的材料.

  通過(guò)上節(jié)課的學(xué)習(xí),我們會(huì)檢驗(yàn)一對(duì)數(shù)值是否為某個(gè)二元一次方程組的解.那么,已知一個(gè)二元一次方程組,應(yīng)該怎樣求出它的解呢?這節(jié)課我們就來(lái)學(xué)習(xí).

  這樣導(dǎo)入  ,可以激發(fā)學(xué)生的求知欲.

  2.探索新知,講授新課

  香蕉的售價(jià)為5元/千克,蘋果的售價(jià)為3元/千克,小華共買了香蕉和蘋果9千克,付款33元,香蕉和蘋果各買了多少千克?

  學(xué)生活動(dòng):分別列出一元一次方程和二元一次方程組,兩個(gè)學(xué)生板演.

  設(shè)買了香蕉 千克,那么蘋果買了 千克,根據(jù)題意,得

  設(shè)買了香蕉 千克,買了蘋果 千克,得

  上面的一元一次方程我們會(huì)解,能否把二元一次方程組轉(zhuǎn)化為一元一次方程呢,由方程①可以得到    ③,把方程②中的 轉(zhuǎn)換成 ,也就是把方程③代入方程②,就可以得到 .這樣,我們就把二元一次方程組轉(zhuǎn)化成了一元一次方程,由這個(gè)方程就可以求出 了.

  解:由①得:      ③

  把③代入②,得:

  ∴

  把 代入③,得:

  ∴

  【教法說(shuō)明】解二元一次方程組與解一元一次方程相比較,向?qū)W生展示了知識(shí)的發(fā)生過(guò)程,這對(duì)于學(xué)生知識(shí)的形成十分重要.

  上面解二元一次方程組的方法,就是代入消元法.你能簡(jiǎn)單說(shuō)說(shuō)的基本思路嗎?

  學(xué)生活動(dòng):小組討論,選代表發(fā)言,教師進(jìn)行指導(dǎo).糾正后歸納:設(shè)法消去一個(gè)未知數(shù),把二元一次方程組轉(zhuǎn)化為一元一次方程.

  例1  解方程組

  (1)觀察上面的方程組,應(yīng)該如何消元?(把①代入②)

 。2)把①代入②后可消掉 ,得到關(guān)于 的一元一次方程,求出 .

 。3)求出 后代入哪個(gè)方程中求 比較簡(jiǎn)單?(①)

  學(xué)生活動(dòng):依次回答問(wèn)題后,教師板書

  解:把①代入②,得

  ∴

  把 代入①,得

  ∴

  如何檢驗(yàn)得到的結(jié)果是否正確?

  學(xué)生活動(dòng):口答檢驗(yàn).

  教師:要把所得結(jié)果分別代入原方程組的每一個(gè)方程中.

  【教法說(shuō)明】給出例1后提出的三個(gè)問(wèn)題,恰好是學(xué)生的思維過(guò)程,明確了解題思路;教師板演例1,規(guī)范了解二元一次方程組的解題格式;通過(guò)檢驗(yàn),可使學(xué)生養(yǎng)成嚴(yán)謹(jǐn)認(rèn)真的學(xué)習(xí)習(xí)慣.

  例2  解方程組

  要把某個(gè)方程化成如例1中方程①的形式后,代入另一個(gè)方程中才能消元.方程②中 的系數(shù)是1,比較簡(jiǎn)單.因此,可以先將方程②變形,用含 的代數(shù)式表示 ,再代入方程①求解.

  學(xué)生活動(dòng):嘗試完成例2.

  教師巡視指導(dǎo),發(fā)現(xiàn)并糾正學(xué)生的問(wèn)題,把書寫過(guò)程規(guī)范化.

  解:由②,得     ③

  把③代入①,得

  ∴ 

  ∴

  把 代入③,得

  ∴

  ∴

  檢驗(yàn)后,師生共同討論:

 。1)由②得到③后,再代入②可以嗎?(不可以)為什么?(得到的是恒等式,不能求解)

  (2)把 代入①或②可以求出 嗎?(可以)代入③有什么好處?(運(yùn)算簡(jiǎn)便)

  學(xué)生活動(dòng):根據(jù)例1、例2的解題過(guò)程,嘗試總結(jié)的一般步驟,討論后選代表發(fā)言.之后,看課本第12頁(yè),用幾個(gè)字概括每個(gè)步驟.

  教師板書:

  (1)變形( )

 。2)代入消元( )

  (3)解一元一次方程得( )

 。4)把 代入 求解

  練習(xí):P13  1.(1)(2);P14  2.(1)(2).

  3.變式訓(xùn)練,培養(yǎng)能力

  ①由 可以得到用 表示 .

 、谠 中,當(dāng) 時(shí), ;當(dāng) 時(shí), ,則 ; .

  ③選擇:若 是方程組 的解,則( )

  A. B. C. D.

  (四)總結(jié)、擴(kuò)展

  1.解二元一次方程組的思想: .

  2.的步驟.

  3.的技巧:①變形的技巧②代入的技巧.

  通過(guò)這節(jié)課的學(xué)習(xí),我們要熟練運(yùn),并能檢驗(yàn)結(jié)果是否正確.

  八、布置作業(yè) 

 。ㄒ唬┍刈鲱}:P15 1.(2)(4),2.(1)(2)(3)(4).

 。ǘ┻x做題:P15 B組1.

  參考答案

 。ㄒ唬1.(2) (4)

  2.(1) (2) (3) (4)

 。ǘ ,

7.2解二元一次方程組 篇5

  教學(xué)建議

  一、重點(diǎn)、難點(diǎn)分析

  本節(jié)的教學(xué)重點(diǎn)是使學(xué)生學(xué)會(huì)用代入法.教學(xué)難點(diǎn) 在于靈活運(yùn)用代入法,這要通過(guò)一定數(shù)量的練習(xí)來(lái)解決;另一個(gè)難點(diǎn)在于用代入法求出一個(gè)未知數(shù)的值后,不知道應(yīng)把它代入哪一個(gè)方程求另一個(gè)未知數(shù)的值比較簡(jiǎn)便.

  解二元一次方程組的關(guān)鍵在于消元,即將“二元”轉(zhuǎn)化為“一元”.我們是通過(guò)等量代換的方法,消去一個(gè)未知數(shù),從而求得原方程組的解.

  二、知識(shí)結(jié)構(gòu)

  三、教法建議

  1.關(guān)于檢驗(yàn)方程組的解的問(wèn)題.教材指出:“檢驗(yàn)時(shí),需將所求得的一對(duì)未知數(shù)的值分別代入原方程組里的每一個(gè)方程中,看看方程的左、右兩邊是不是相等.”教學(xué)時(shí)要強(qiáng)調(diào)“原方程組”和“每一個(gè)”這兩點(diǎn).檢驗(yàn)的作用,一是使學(xué)生進(jìn)一步明確代入法是求方程組的解的一種基本方法,通過(guò)代入消元的確可以求得方程組的解二是進(jìn)一步鞏固二元一次方程組的解的概念,強(qiáng)調(diào)

  這一對(duì)數(shù)值才是原方程組的解,并且它們必須使兩個(gè)方程左、右兩邊的值都相等;三是因?yàn)槲覀儧](méi)有用方程組的同解原理而是用代換(等式的傳遞)來(lái)解方程組的,所以有必要檢驗(yàn)求出來(lái)的這一對(duì)數(shù)值是不是原方程組的解;四是為了杜絕變形和計(jì)算時(shí)發(fā)生的錯(cuò)誤.檢驗(yàn)可以口算或在草稿紙上演算,教科書中沒(méi)有寫出.

  2.教學(xué)時(shí),應(yīng)結(jié)合具體的例子指出這里解二元一次方程組的關(guān)鍵在于消元,即把“二元”轉(zhuǎn)化為“一元”.我們是通過(guò)等量代換的方法,消去一個(gè)未知數(shù),從而求得原方程組的解.早一些指出消元思想和把“二元”轉(zhuǎn)化為“一元”的方法,這樣,學(xué)生就能有較強(qiáng)的目的性.

  3.教師講解例題時(shí)要注意由簡(jiǎn)到繁,由易到難,逐步加深.隨著例題由簡(jiǎn)到繁,由易到難,要特別強(qiáng)調(diào)解方程組時(shí)應(yīng)努力使變形后的方程比較簡(jiǎn)單和代入后化簡(jiǎn)比較容易.這樣不僅可以求解迅速,而且可以減少錯(cuò)誤.

  一、素質(zhì)教育目標(biāo)

 。ㄒ唬┲R(shí)教學(xué)點(diǎn)

  1.掌握用代入法解二元一次方程組的步驟.

  2.熟練運(yùn)用代入法解簡(jiǎn)單的二元一次方程組.

  (二)能力訓(xùn)練點(diǎn)

  1.培養(yǎng)學(xué)生的分析能力,能迅速在所給的二元一次方程組中,選擇一個(gè)系數(shù)較簡(jiǎn)單的方程進(jìn)行變形.

  2.訓(xùn)練學(xué)生的運(yùn)算技巧,養(yǎng)成檢驗(yàn)的習(xí)慣.

 。ㄈ┑掠凉B透點(diǎn)

  消元,化未知為已知的數(shù)學(xué)思想.

 。ㄋ模┟烙凉B透點(diǎn)

  通過(guò)本節(jié)課的學(xué)習(xí),滲透化歸的數(shù)學(xué)美,以及方程組的解所體現(xiàn)出來(lái)的奇異的數(shù)學(xué)美.

  二、學(xué)法引導(dǎo)

  1.教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、練習(xí)法,嘗試指導(dǎo)法.

  2.學(xué)生學(xué)法:在前面已經(jīng)學(xué)過(guò)一元一次方程的解法,求二元一次方程組的解關(guān)鍵是化二元方程為一元方程,故在求解過(guò)程中始終應(yīng)抓住消元的思想方法.

  三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

 。ǎ┲攸c(diǎn)

  使學(xué)生會(huì)用代入法解二元一次方程組.

 。ǘ╇y點(diǎn)

  靈活運(yùn)用代入法的技巧.

 。ㄈ┮牲c(diǎn)

  如何“消元”,把“二元”轉(zhuǎn)化為“一元”.

 。ㄋ模┙鉀Q辦法

  一方面復(fù)習(xí)用一個(gè)未知量表示另一個(gè)未知量的方法,另一方面學(xué)會(huì)選擇用一個(gè)系數(shù)較簡(jiǎn)單的方程進(jìn)行變形:

  四、課時(shí)安排

  一課時(shí).

  五、教具學(xué)具準(zhǔn)備

  電腦或投影儀、自制膠片.

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  1.教師設(shè)問(wèn)怎樣用一個(gè)未知量表示另一個(gè)未知量,并比較哪種表示形式更簡(jiǎn)單,如 等.

  2.通過(guò)課本中香蕉、蘋果的應(yīng)用問(wèn)題,引導(dǎo)學(xué)生列出一元一次方程或二元一次方程組,并通過(guò)比較、嘗試,探索出化二元為一元的解方程組的方法.

  3.再通過(guò)比較、嘗試,探索出選一個(gè)系數(shù)較簡(jiǎn)單的方程變形,通過(guò)代入法求方程組解的辦法更簡(jiǎn)便,并尋找出求解的規(guī)律.

  七、教學(xué)步驟 

 。ǎ┟鞔_目標(biāo)

  本節(jié)課我們將學(xué)習(xí)用代入法求二元一次方程組的解.

  (二)整體感知

  從復(fù)習(xí)用一個(gè)未知量表達(dá)另一個(gè)未知量的方法,從而導(dǎo)入  運(yùn)用代入法化二元為一元方程的求解過(guò)程,即利用代入消元法求二元一次方程組的解的辦法.

 。ㄈ┙虒W(xué)步驟 

  1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入  

 。1)已知方程 ,先用含 的代數(shù)式表示 ,再用含 的代數(shù)式表示 .并比較哪一種形式比較簡(jiǎn)單.

 。2)選擇題:

  二元一次方程組 的解是

  A. B. C. D.

  【教法說(shuō)明】 第(1)題為用代入法解二元一次方程組打下基礎(chǔ);第(2)題既復(fù)習(xí)了上節(jié)課的重點(diǎn),又成為導(dǎo)入  新課的材料.

  通過(guò)上節(jié)課的學(xué)習(xí),我們會(huì)檢驗(yàn)一對(duì)數(shù)值是否為某個(gè)二元一次方程組的解.那么,已知一個(gè)二元一次方程組,應(yīng)該怎樣求出它的解呢?這節(jié)課我們就來(lái)學(xué)習(xí).

  這樣導(dǎo)入  ,可以激發(fā)學(xué)生的求知欲.

  2.探索新知,講授新課

  香蕉的售價(jià)為5元/千克,蘋果的售價(jià)為3元/千克,小華共買了香蕉和蘋果9千克,付款33元,香蕉和蘋果各買了多少千克?

  學(xué)生活動(dòng):分別列出一元一次方程和二元一次方程組,兩個(gè)學(xué)生板演.

  設(shè)買了香蕉 千克,那么蘋果買了 千克,根據(jù)題意,得

  設(shè)買了香蕉 千克,買了蘋果 千克,得

  上面的一元一次方程我們會(huì)解,能否把二元一次方程組轉(zhuǎn)化為一元一次方程呢,由方程①可以得到    ③,把方程②中的 轉(zhuǎn)換成 ,也就是把方程③代入方程②,就可以得到 .這樣,我們就把二元一次方程組轉(zhuǎn)化成了一元一次方程,由這個(gè)方程就可以求出 了.

  解:由①得:      ③

  把③代入②,得:

  ∴

  把 代入③,得:

  ∴

  【教法說(shuō)明】解二元一次方程組與解一元一次方程相比較,向?qū)W生展示了知識(shí)的發(fā)生過(guò)程,這對(duì)于學(xué)生知識(shí)的形成十分重要.

  上面解二元一次方程組的方法,就是代入消元法.你能簡(jiǎn)單說(shuō)說(shuō)用代入法解二元一次方程組的基本思路嗎?

  學(xué)生活動(dòng):小組討論,選代表發(fā)言,教師進(jìn)行指導(dǎo).糾正后歸納:設(shè)法消去一個(gè)未知數(shù),把二元一次方程組轉(zhuǎn)化為一元一次方程.

  例1  解方程組

 。1)觀察上面的方程組,應(yīng)該如何消元?(把①代入②)

 。2)把①代入②后可消掉 ,得到關(guān)于 的一元一次方程,求出 .

 。3)求出 后代入哪個(gè)方程中求 比較簡(jiǎn)單?(①)

  學(xué)生活動(dòng):依次回答問(wèn)題后,教師板書

  解:把①代入②,得

  ∴

  把 代入①,得

  ∴

  如何檢驗(yàn)得到的結(jié)果是否正確?

  學(xué)生活動(dòng):口答檢驗(yàn).

  教師:要把所得結(jié)果分別代入原方程組的每一個(gè)方程中.

  【教法說(shuō)明】給出例1后提出的三個(gè)問(wèn)題,恰好是學(xué)生的思維過(guò)程,明確了解題思路;教師板演例1,規(guī)范了解二元一次方程組的解題格式;通過(guò)檢驗(yàn),可使學(xué)生養(yǎng)成嚴(yán)謹(jǐn)認(rèn)真的學(xué)習(xí)習(xí)慣.

  例2  解方程組

  要把某個(gè)方程化成如例1中方程①的形式后,代入另一個(gè)方程中才能消元.方程②中 的系數(shù)是1,比較簡(jiǎn)單.因此,可以先將方程②變形,用含 的代數(shù)式表示 ,再代入方程①求解.

  學(xué)生活動(dòng):嘗試完成例2.

  教師巡視指導(dǎo),發(fā)現(xiàn)并糾正學(xué)生的問(wèn)題,把書寫過(guò)程規(guī)范化.

  解:由②,得     ③

  把③代入①,得

  ∴ 

  ∴

  把 代入③,得

  ∴

  ∴

  檢驗(yàn)后,師生共同討論:

 。1)由②得到③后,再代入②可以嗎?(不可以)為什么?(得到的是恒等式,不能求解)

 。2)把 代入①或②可以求出 嗎?(可以)代入③有什么好處?(運(yùn)算簡(jiǎn)便)

  學(xué)生活動(dòng):根據(jù)例1、例2的解題過(guò)程,嘗試總結(jié)用代入法解二元一次方程組的一般步驟,討論后選代表發(fā)言.之后,看課本第12頁(yè),用幾個(gè)字概括每個(gè)步驟.

  教師板書:

 。1)變形( )

 。2)代入消元( )

  (3)解一元一次方程得( )

 。4)把 代入 求解

  練習(xí):P13  1.(1)(2);P14  2.(1)(2).

  3.變式訓(xùn)練,培養(yǎng)能力

 、儆 可以得到用 表示 .

 、谠 中,當(dāng) 時(shí), ;當(dāng) 時(shí), ,則 ; .

 、圻x擇:若 是方程組 的解,則( )

  A. B. C. D.

 。ㄋ模┛偨Y(jié)、擴(kuò)展

  1.解二元一次方程組的思想: 

  2.用代入法解二元一次方程組的步驟.

  3.用代入法解二元一次方程組的技巧:①變形的技巧②代入的技巧.

  通過(guò)這節(jié)課的學(xué)習(xí),我們要熟練運(yùn)用代入法解二元一次方程組,并能檢驗(yàn)結(jié)果是否正確.

  八、布置作業(yè) 

 。ㄒ唬┍刈鲱}:P15 1.(2)(4),2.(1)(2)(3)(4).

 。ǘ┻x做題:P15 B組1.

  參考答案

 。ㄒ唬1.(2) (4)

  2.(1) (2) (3) (4)

 。ǘ ,

7.2解二元一次方程組 篇6

  教學(xué)建議

  1.教材分析

 。1)知識(shí)結(jié)構(gòu)

 。2)重點(diǎn)、難點(diǎn)分析

  重點(diǎn):本小節(jié)的重點(diǎn)是使學(xué)生學(xué)會(huì).這也是一種全新的知識(shí),與在一元一次方程兩邊都加上、減去同一個(gè)數(shù)或同一個(gè)整式,或者都乘以、除以同一個(gè)非零數(shù)的情況是不一樣的,但運(yùn)用這項(xiàng)知識(shí)(這里也表現(xiàn)為一種方法),有時(shí)可以簡(jiǎn)捷地求出二元一次方程組的解,因此學(xué)生同樣會(huì)表現(xiàn)出一種極大的興趣.必須充分利用學(xué)生學(xué)會(huì)這種方法的積極性.加減(消元)法是解二元一次方程組的基本方法之一,因此要讓學(xué)生學(xué)會(huì),并能靈活運(yùn)用.這種方法同樣是解三元一次方程組和某些二元二次方程組的基本方法,在教學(xué)中必須引起足夠重視.

  難點(diǎn):靈活運(yùn)用加減法的技巧,以便將方程變形為比較簡(jiǎn)單和計(jì)算比較簡(jiǎn)便,這也要通過(guò)一定數(shù)量的練習(xí)來(lái)解決.

  2.教法建議

  (1)本節(jié)是通過(guò)一個(gè)引例,介紹了加減法解方程組的基本思想和解題過(guò)程.教學(xué)時(shí),要引導(dǎo)學(xué)生觀察這個(gè)方程組中未知數(shù)系數(shù)的特點(diǎn).通過(guò)觀察讓學(xué)生說(shuō)出,在兩個(gè)方程中y的系數(shù)互為相反數(shù)或在兩個(gè)方程中x的系數(shù)相等,讓學(xué)生自己動(dòng)腦想一想,怎么消元比較簡(jiǎn)便,然后引出加減消元法.

 。2)講完加減法后,課本通過(guò)三個(gè)例題加以鞏固,這三個(gè)例題是由淺入深的,講解時(shí)也要先讓學(xué)生觀察每個(gè)方程組未知數(shù)系數(shù)的特點(diǎn),然后讓學(xué)生說(shuō)出每個(gè)方程組的解法,例題1老師自己板書,剩下的兩個(gè)例題讓學(xué)生上黑板板書,然后老師點(diǎn)評(píng).

 。3)講解完本節(jié)后,教師應(yīng)引導(dǎo)學(xué)生比較代入法與加減法這兩種方法,這兩種方法雖有不同,但實(shí)質(zhì)都是消元,即通過(guò)消去一個(gè)未知數(shù),把“二元”轉(zhuǎn)化為“一元”.也就是說(shuō):

  這時(shí)學(xué)生對(duì)解題方法比較熟悉,但還沒(méi)有上升到理論的高度,這時(shí)教師應(yīng)及時(shí)點(diǎn)撥、滲透化歸轉(zhuǎn)化的思想,并指出這是具有普遍意義的分析問(wèn)題、解決問(wèn)題的思想方法.

  教學(xué)設(shè)計(jì)示例

 。ǖ谝徽n時(shí))

  一、素質(zhì)教育目標(biāo)

 。ㄒ唬┲R(shí)教學(xué)點(diǎn)

  1.使學(xué)生掌握的步驟.

  2.能運(yùn).

 。ǘ┠芰τ(xùn)練點(diǎn)

  1.培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力.

  2.訓(xùn)練學(xué)生的運(yùn)算技巧.

  (三)德育滲透點(diǎn)

  消元,化未知為已知的轉(zhuǎn)化思想.

  (四)美育滲透點(diǎn)

  滲透化歸的數(shù)學(xué)美.

  二、學(xué)法引導(dǎo)

  1.教學(xué)方法:談話法、討論法.

  2.學(xué)生學(xué)法:觀察各未知量前面系數(shù)的特征,只要將相同未知量前的系數(shù)化為絕對(duì)值相等的值后即可利用加減法進(jìn)行消元,同時(shí)在運(yùn)算中注意歸納解題的技巧和解題的方法.

  三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

 。ǎ┲攸c(diǎn)

  使學(xué)生學(xué)會(huì).

 。ǘ╇y點(diǎn)

  靈活運(yùn)用加減消元法的技巧.

  (三)疑點(diǎn)

  如何“消元”,把“二元”轉(zhuǎn)化為“一元”.

 。ㄋ模┙鉀Q辦法

  只要將相同未知量前的系數(shù)化為絕對(duì)值相等的值即可利用加減法進(jìn)行消元.

  四、課時(shí)安排

  一課時(shí).

  五、教具學(xué)具準(zhǔn)備

  投影儀、膠片.

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  1.教師通過(guò)復(fù)習(xí)上節(jié)課代入法解二元一次方程組的方法及其解題思想,引入除了消元法還有其他方法嗎?從而導(dǎo)入  新課即加減法解二元一次方程組.

  2.通過(guò)引例進(jìn)一步讓學(xué)生探究是用代入法還是用加減法解方程組更簡(jiǎn)單,讓學(xué)生進(jìn)一步明確用加減法解題的優(yōu)越性.

  3.通過(guò)反復(fù)的訓(xùn)練、歸納、再訓(xùn)練、再歸納,從而積累用加減法解方程組的經(jīng)驗(yàn),進(jìn)而上升到理論.

  七、教學(xué)步驟

  (-)明確目標(biāo)

  本節(jié)課通過(guò)復(fù)習(xí)代入法從而引入另一種消元的辦法,即加減法解二元一次方程組.

  (二)整體感知

  加減法解二元一次方程組的關(guān)鍵在于將相同字母的系數(shù)化為絕對(duì)值相等的值,即可使用加減法消元.故在教學(xué)中應(yīng)反復(fù)教會(huì)學(xué)生觀察并抓住解題的特征及辦法從而方便解題.

  (三)教學(xué)過(guò)程

  1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入  

  (1)用代入法解二元一次方程組的基本思想是什么?

  (2)用代入法解下列方程組,并檢驗(yàn)所得結(jié)果是否正確.

  學(xué)生活動(dòng):口答第(1)題,在練習(xí)本上完成第(2)題,一個(gè)同學(xué)說(shuō)出結(jié)果.

  上面的方程組中,我們用代入法消去了一個(gè)未知數(shù),將“二元”轉(zhuǎn)化為“一元”,從而得到了方程組的解.對(duì)于二元一次方程組,是否存在其他方法,也可以消去一個(gè)未知數(shù),達(dá)到化“二元”為“一元”的目的呢?這就是我們這節(jié)課將要學(xué)習(xí)的內(nèi)容.

  【教法說(shuō)明】由練習(xí)導(dǎo)入  新課,既復(fù)習(xí)了舊知識(shí),又引出了新課題,教學(xué)過(guò)程中還可以進(jìn)行代入法和加減法的對(duì)比,訓(xùn)練學(xué)生根據(jù)題目的特點(diǎn)選取適當(dāng)?shù)姆椒ń忸}.

  2.探索新知,講授新課

  第(2)題的兩個(gè)方程中,未知數(shù) 的系數(shù)有什么特點(diǎn)?(互為相反數(shù))根據(jù)等式的性質(zhì),如果把這兩個(gè)方程的左邊與左邊相加,右邊與右邊相加,就可以消掉 ,得到一個(gè)一元一次方程,進(jìn)而求得二元一次方程組的解.

  解:①+②,得

  把 代入①,得

  ∴

  ∴

  學(xué)生活動(dòng):比較用這種方法得到的 、 值是否與用代入法得到的相同.(相同)

  上面方程組的兩個(gè)方程中,因?yàn)?的系數(shù)互為相反數(shù),所以我們把兩個(gè)方程相加,就消去了 .觀察一下, 的系數(shù)有何特點(diǎn)?(相等)方程①和方程②經(jīng)過(guò)怎樣的變化可以消去 ?(相減)

  學(xué)生活動(dòng):觀察、思考,嘗試用①-②消元,解方程組,比較結(jié)果是否與用①+②得到的結(jié)果相同.(相同)

  我們將原方程組的兩個(gè)方程相加或相減,把“二元”化成了“一元”,從而得到了方程組的解.像這種解二元一次方程組的方法叫加減消元法,簡(jiǎn)稱“加減法”.

  提問(wèn):①比較上面解二元一次方程組的方法,是用代入法簡(jiǎn)單,還是用加減法簡(jiǎn)單?(加減法)

  ②在什么條件下可以用加減法進(jìn)行消元?(某一個(gè)未知數(shù)的系數(shù)相等或互為相反數(shù))

 、凼裁礂l件下用加法、什么條件下用減法?(某個(gè)未知數(shù)的系數(shù)互為相反數(shù)時(shí)用加法,系數(shù)相等時(shí)用減法)

  【教法說(shuō)明】這幾個(gè)問(wèn)題,可使學(xué)生明確使用加減法的條件,體會(huì)在某些條件下使用加減法的優(yōu)越性.

  例1  解方程組

  哪個(gè)未知數(shù)的系數(shù)有特點(diǎn)?( 的系數(shù)相等)把這兩個(gè)方程怎樣變化可以消去 ?(相減)

  學(xué)生活動(dòng):回答問(wèn)題后,獨(dú)立完成例1,一個(gè)學(xué)生板演.

  解:①-②,得

  ∴

  把 代入②,得

  ∴

  ∴

  ∴

  (1)檢驗(yàn)一下,所得結(jié)果是否正確?

 。2)用②-①可以消掉 嗎?(可以)是用①-②,還是用②-①計(jì)算比較簡(jiǎn)單?(①-②簡(jiǎn)單)

  (3)把 代入①, 的值是多少?( ),是代入①計(jì)算簡(jiǎn)單還是代入②計(jì)算簡(jiǎn)單?(代入系數(shù)較簡(jiǎn)單的方程)

  練習(xí):P23  l.(l)(2)(3),分組練習(xí),并把學(xué)生的解題過(guò)程在投影儀上顯示.

  小結(jié):的條件是某個(gè)未知數(shù)的系數(shù)絕對(duì)值相等.

  例2  解方程組

  (1)上面的方程組是否符合用加減法消元的條件?(不符合)

  (2)如何轉(zhuǎn)化可使某個(gè)未知數(shù)系數(shù)的絕對(duì)值相等?(①×2或②×3)

  歸納:如果兩個(gè)方程中,未知數(shù)系數(shù)的絕對(duì)值都不相等,可以在方程兩邊部乘以同一個(gè)適當(dāng)?shù)臄?shù),使兩個(gè)方程中有一個(gè)未知數(shù)的系數(shù)絕對(duì)值相等,然后再加減消元.

  學(xué)生活動(dòng):獨(dú)立解題,并把一名學(xué)生解題過(guò)程在投影儀上顯示.

  學(xué)生活動(dòng):總結(jié)的步驟.

  ①變形,使某個(gè)未知數(shù)的系數(shù)絕對(duì)值相等.

 、诩訙p消元.

 、劢庖辉淮畏匠.

 、艽氲昧硪粋(gè)未知數(shù)的值,從而得方程組的解.

  3.嘗試反饋,鞏固知識(shí)

  練習(xí):P23  1.(4)(5).

  【教法說(shuō)明】通過(guò)練習(xí),使學(xué)生熟練地并能在練習(xí)中摸索運(yùn)算技巧,培養(yǎng)能力.

  4.變式訓(xùn)練,培養(yǎng)能力

  (1)選擇:二元一次方程組 的解是( )

  A. B. C. D.

 。2)已知 ,求 、 的值.

  學(xué)生活動(dòng):第(1)題口答,第(2)題在練習(xí)本上完成.

  【教法說(shuō)明】第(1)題可以用解方程組的方法得解,也可以把四組值分別代入原方程組中,利用檢驗(yàn)的方法解,這道題能訓(xùn)練學(xué)生思維的靈活性;第(2)題通過(guò)分析,學(xué)生可得方程組 從而求得 、 的值.此題可以培養(yǎng)學(xué)生分析問(wèn)題,解決問(wèn)題的綜合能力.

  (四)總結(jié)、擴(kuò)展

  1.的思想:

  2.的條件:某一未知數(shù)系數(shù)絕對(duì)值相等.

  3.的步驟:

  八、布置作業(yè) 

  (一)必做題:P24 1.

 。ǘ┻x做題:P25 B組1.

  (三)預(yù)習(xí):下節(jié)課內(nèi)容.

  參考答案

 。ㄒ唬1) (2) (3) (4)

  (二)1.(1)與(4) (2)與(3)

7.2解二元一次方程組 篇7

  教學(xué)建議

  一、重點(diǎn)、難點(diǎn)分析

  本節(jié)的教學(xué)重點(diǎn)是使學(xué)生學(xué)會(huì)用代入法.教學(xué)難點(diǎn)在于靈活運(yùn)用代入法,這要通過(guò)一定數(shù)量的練習(xí)來(lái)解決;另一個(gè)難點(diǎn)在于用代入法求出一個(gè)未知數(shù)的值后,不知道應(yīng)把它代入哪一個(gè)方程求另一個(gè)未知數(shù)的值比較簡(jiǎn)便.

  解二元一次方程組的關(guān)鍵在于消元,即將“二元”轉(zhuǎn)化為“一元”.我們是通過(guò)等量代換的方法,消去一個(gè)未知數(shù),從而求得原方程組的解.

  二、知識(shí)結(jié)構(gòu)

  三、教法建議

  1.關(guān)于檢驗(yàn)方程組的解的問(wèn)題.教材指出:“檢驗(yàn)時(shí),需將所求得的一對(duì)未知數(shù)的值分別代入原方程組里的每一個(gè)方程中,看看方程的左、右兩邊是不是相等.”教學(xué)時(shí)要強(qiáng)調(diào)“原方程組”和“每一個(gè)”這兩點(diǎn).檢驗(yàn)的作用,一是使學(xué)生進(jìn)一步明確代入法是求方程組的解的一種基本方法,通過(guò)代入消元的確可以求得方程組的解二是進(jìn)一步鞏固二元一次方程組的解的概念,強(qiáng)調(diào)

  這一對(duì)數(shù)值才是原方程組的解,并且它們必須使兩個(gè)方程左、右兩邊的值都相等;三是因?yàn)槲覀儧](méi)有用方程組的同解原理而是用代換(等式的傳遞)來(lái)解方程組的,所以有必要檢驗(yàn)求出來(lái)的這一對(duì)數(shù)值是不是原方程組的解;四是為了杜絕變形和計(jì)算時(shí)發(fā)生的錯(cuò)誤.檢驗(yàn)可以口算或在草稿紙上演算,教科書中沒(méi)有寫出.

  2.教學(xué)時(shí),應(yīng)結(jié)合具體的例子指出這里解二元一次方程組的關(guān)鍵在于消元,即把“二元”轉(zhuǎn)化為“一元”.我們是通過(guò)等量代換的方法,消去一個(gè)未知數(shù),從而求得原方程組的解.早一些指出消元思想和把“二元”轉(zhuǎn)化為“一元”的方法,這樣,學(xué)生就能有較強(qiáng)的目的性.

  3.教師講解例題時(shí)要注意由簡(jiǎn)到繁,由易到難,逐步加深.隨著例題由簡(jiǎn)到繁,由易到難,要特別強(qiáng)調(diào)解方程組時(shí)應(yīng)努力使變形后的方程比較簡(jiǎn)單和代入后化簡(jiǎn)比較容易.這樣不僅可以求解迅速,而且可以減少錯(cuò)誤.

  一、素質(zhì)教育目標(biāo)

 。ㄒ唬┲R(shí)教學(xué)點(diǎn)

  1.掌握的步驟.

  2.熟練運(yùn)用代入法解簡(jiǎn)單的二元一次方程組.

 。ǘ┠芰τ(xùn)練點(diǎn)

  1.培養(yǎng)學(xué)生的分析能力,能迅速在所給的二元一次方程組中,選擇一個(gè)系數(shù)較簡(jiǎn)單的方程進(jìn)行變形.

  2.訓(xùn)練學(xué)生的運(yùn)算技巧,養(yǎng)成檢驗(yàn)的習(xí)慣.

 。ㄈ┑掠凉B透點(diǎn)

  消元,化未知為已知的數(shù)學(xué)思想.

 。ㄋ模┟烙凉B透點(diǎn)

  通過(guò)本節(jié)課的學(xué)習(xí),滲透化歸的數(shù)學(xué)美,以及方程組的解所體現(xiàn)出來(lái)的奇異的數(shù)學(xué)美.

  二、學(xué)法引導(dǎo)

  1.教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、練習(xí)法,嘗試指導(dǎo)法.

  2.學(xué)生學(xué)法:在前面已經(jīng)學(xué)過(guò)一元一次方程的解法,求二元一次方程組的解關(guān)鍵是化二元方程為一元方程,故在求解過(guò)程中始終應(yīng)抓住消元的思想方法.

  三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

 。ǎ┲攸c(diǎn)

  使學(xué)生會(huì).

 。ǘ╇y點(diǎn)

  靈活運(yùn)用代入法的技巧.

 。ㄈ┮牲c(diǎn)

  如何“消元”,把“二元”轉(zhuǎn)化為“一元”.

 。ㄋ模┙鉀Q辦法

  一方面復(fù)習(xí)用一個(gè)未知量表示另一個(gè)未知量的方法,另一方面學(xué)會(huì)選擇用一個(gè)系數(shù)較簡(jiǎn)單的方程進(jìn)行變形:

  四、課時(shí)安排

  一課時(shí).

  五、教具學(xué)具準(zhǔn)備

  電腦或投影儀、自制膠片.

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  1.教師設(shè)問(wèn)怎樣用一個(gè)未知量表示另一個(gè)未知量,并比較哪種表示形式更簡(jiǎn)單,如 等.

  2.通過(guò)課本中香蕉、蘋果的應(yīng)用問(wèn)題,引導(dǎo)學(xué)生列出一元一次方程或二元一次方程組,并通過(guò)比較、嘗試,探索出化二元為一元的解方程組的方法.

  3.再通過(guò)比較、嘗試,探索出選一個(gè)系數(shù)較簡(jiǎn)單的方程變形,通過(guò)代入法求方程組解的辦法更簡(jiǎn)便,并尋找出求解的規(guī)律.

  七、教學(xué)步驟

 。ǎ┟鞔_目標(biāo)

  本節(jié)課我們將學(xué)習(xí)用代入法求二元一次方程組的解.

 。ǘ┱w感知

  從復(fù)習(xí)用一個(gè)未知量表達(dá)另一個(gè)未知量的方法,從而導(dǎo)入  運(yùn)用代入法化二元為一元方程的求解過(guò)程,即利用代入消元法求二元一次方程組的解的辦法.

 。ㄈ教學(xué)步驟

  1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入  

 。1)已知方程 ,先用含 的代數(shù)式表示 ,再用含 的代數(shù)式表示 .并比較哪一種形式比較簡(jiǎn)單.

  (2)選擇題:

  二元一次方程組 的解是

  A. B. C. D.

  【教法說(shuō)明】 第(1)題為打下基礎(chǔ);第(2)題既復(fù)習(xí)了上節(jié)課的重點(diǎn),又成為導(dǎo)入  新課的材料.

  通過(guò)上節(jié)課的學(xué)習(xí),我們會(huì)檢驗(yàn)一對(duì)數(shù)值是否為某個(gè)二元一次方程組的解.那么,已知一個(gè)二元一次方程組,應(yīng)該怎樣求出它的解呢?這節(jié)課我們就來(lái)學(xué)習(xí).

  這樣導(dǎo)入  ,可以激發(fā)學(xué)生的求知欲.

  2.探索新知,講授新課

  香蕉的售價(jià)為5元/千克,蘋果的售價(jià)為3元/千克,小華共買了香蕉和蘋果9千克,付款33元,香蕉和蘋果各買了多少千克?

  學(xué)生活動(dòng):分別列出一元一次方程和二元一次方程組,兩個(gè)學(xué)生板演.

  設(shè)買了香蕉 千克,那么蘋果買了 千克,根據(jù)題意,得

  設(shè)買了香蕉 千克,買了蘋果 千克,得

  上面的一元一次方程我們會(huì)解,能否把二元一次方程組轉(zhuǎn)化為一元一次方程呢,由方程①可以得到    ③,把方程②中的 轉(zhuǎn)換成 ,也就是把方程③代入方程②,就可以得到 .這樣,我們就把二元一次方程組轉(zhuǎn)化成了一元一次方程,由這個(gè)方程就可以求出 了.

  解:由①得:      ③

  把③代入②,得:

  ∴

  把 代入③,得:

  ∴

  【教法說(shuō)明】解二元一次方程組與解一元一次方程相比較,向?qū)W生展示了知識(shí)的發(fā)生過(guò)程,這對(duì)于學(xué)生知識(shí)的形成十分重要.

  上面解二元一次方程組的方法,就是代入消元法.你能簡(jiǎn)單說(shuō)說(shuō)的基本思路嗎?

  學(xué)生活動(dòng):小組討論,選代表發(fā)言,教師進(jìn)行指導(dǎo).糾正后歸納:設(shè)法消去一個(gè)未知數(shù),把二元一次方程組轉(zhuǎn)化為一元一次方程.

  例1  解方程組

  (1)觀察上面的方程組,應(yīng)該如何消元?(把①代入②)

  (2)把①代入②后可消掉 ,得到關(guān)于 的一元一次方程,求出 .

  (3)求出 后代入哪個(gè)方程中求 比較簡(jiǎn)單?(①)

  學(xué)生活動(dòng):依次回答問(wèn)題后,教師板書

  解:把①代入②,得

  ∴

  把 代入①,得

  ∴

  如何檢驗(yàn)得到的結(jié)果是否正確?

  學(xué)生活動(dòng):口答檢驗(yàn).

  教師:要把所得結(jié)果分別代入原方程組的每一個(gè)方程中.

  【教法說(shuō)明】給出例1后提出的三個(gè)問(wèn)題,恰好是學(xué)生的思維過(guò)程,明確了解題思路;教師板演例1,規(guī)范了解二元一次方程組的解題格式;通過(guò)檢驗(yàn),可使學(xué)生養(yǎng)成嚴(yán)謹(jǐn)認(rèn)真的學(xué)習(xí)習(xí)慣.

  例2  解方程組

  要把某個(gè)方程化成如例1中方程①的形式后,代入另一個(gè)方程中才能消元.方程②中 的系數(shù)是1,比較簡(jiǎn)單.因此,可以先將方程②變形,用含 的代數(shù)式表示 ,再代入方程①求解.

  學(xué)生活動(dòng):嘗試完成例2.

  教師巡視指導(dǎo),發(fā)現(xiàn)并糾正學(xué)生的問(wèn)題,把書寫過(guò)程規(guī)范化.

  解:由②,得     ③

  把③代入①,得

  ∴ 

  ∴

  把 代入③,得

  ∴

  ∴

  檢驗(yàn)后,師生共同討論:

  (1)由②得到③后,再代入②可以嗎?(不可以)為什么?(得到的是恒等式,不能求解)

 。2)把 代入①或②可以求出 嗎?(可以)代入③有什么好處?(運(yùn)算簡(jiǎn)便)

  學(xué)生活動(dòng):根據(jù)例1、例2的解題過(guò)程,嘗試總結(jié)的一般步驟,討論后選代表發(fā)言.之后,看課本第12頁(yè),用幾個(gè)字概括每個(gè)步驟.

  教師板書

  (1)變形( )

 。2)代入消元( )

 。3)解一元一次方程得( )

  (4)把 代入 求解

  練習(xí):P13  1.(1)(2);P14  2.(1)(2).

  3.變式訓(xùn)練,培養(yǎng)能力

 、儆 可以得到用 表示 .

 、谠 中,當(dāng) 時(shí), ;當(dāng) 時(shí), ,則 ; .

 、圻x擇:若 是方程組 的解,則( )

  A. B. C. D.

 。ㄋ模┛偨Y(jié)、擴(kuò)展

  1.解二元一次方程組的思想: .

  2.的步驟.

  3.的技巧:①變形的技巧②代入的技巧.

  通過(guò)這節(jié)課的學(xué)習(xí),我們要熟練運(yùn),并能檢驗(yàn)結(jié)果是否正確.

  八、布置作業(yè) 

 。ㄒ唬┍刈鲱}:P15 1.(2)(4),2.(1)(2)(3)(4).

 。ǘ┻x做題:P15 B組1.

  參考答案

  (一)1.(2) (4)

  2.(1) (2) (3) (4)

 。ǘ ,

7.2解二元一次方程組 篇8

  教學(xué)建議

  一、重點(diǎn)、難點(diǎn)分析

  本節(jié)的教學(xué)重點(diǎn)是使學(xué)生學(xué)會(huì)用代入法.教學(xué)難點(diǎn) 在于靈活運(yùn)用代入法,這要通過(guò)一定數(shù)量的練習(xí)來(lái)解決;另一個(gè)難點(diǎn)在于用代入法求出一個(gè)未知數(shù)的值后,不知道應(yīng)把它代入哪一個(gè)方程求另一個(gè)未知數(shù)的值比較簡(jiǎn)便.

  解二元一次方程組的關(guān)鍵在于消元,即將“二元”轉(zhuǎn)化為“一元”.我們是通過(guò)等量代換的方法,消去一個(gè)未知數(shù),從而求得原方程組的解.

  二、知識(shí)結(jié)構(gòu)

  三、教法建議

  1.關(guān)于檢驗(yàn)方程組的解的問(wèn)題.教材指出:“檢驗(yàn)時(shí),需將所求得的一對(duì)未知數(shù)的值分別代入原方程組里的每一個(gè)方程中,看看方程的左、右兩邊是不是相等.”教學(xué)時(shí)要強(qiáng)調(diào)“原方程組”和“每一個(gè)”這兩點(diǎn).檢驗(yàn)的作用,一是使學(xué)生進(jìn)一步明確代入法是求方程組的解的一種基本方法,通過(guò)代入消元的確可以求得方程組的解二是進(jìn)一步鞏固二元一次方程組的解的概念,強(qiáng)調(diào)

  這一對(duì)數(shù)值才是原方程組的解,并且它們必須使兩個(gè)方程左、右兩邊的值都相等;三是因?yàn)槲覀儧](méi)有用方程組的同解原理而是用代換(等式的傳遞)來(lái)解方程組的,所以有必要檢驗(yàn)求出來(lái)的這一對(duì)數(shù)值是不是原方程組的解;四是為了杜絕變形和計(jì)算時(shí)發(fā)生的錯(cuò)誤.檢驗(yàn)可以口算或在草稿紙上演算,教科書中沒(méi)有寫出.

  2.教學(xué)時(shí),應(yīng)結(jié)合具體的例子指出這里解二元一次方程組的關(guān)鍵在于消元,即把“二元”轉(zhuǎn)化為“一元”.我們是通過(guò)等量代換的方法,消去一個(gè)未知數(shù),從而求得原方程組的解.早一些指出消元思想和把“二元”轉(zhuǎn)化為“一元”的方法,這樣,學(xué)生就能有較強(qiáng)的目的性.

  3.教師講解例題時(shí)要注意由簡(jiǎn)到繁,由易到難,逐步加深.隨著例題由簡(jiǎn)到繁,由易到難,要特別強(qiáng)調(diào)解方程組時(shí)應(yīng)努力使變形后的方程比較簡(jiǎn)單和代入后化簡(jiǎn)比較容易.這樣不僅可以求解迅速,而且可以減少錯(cuò)誤.

  一、素質(zhì)教育目標(biāo)

 。ㄒ唬┲R(shí)教學(xué)點(diǎn)

  1.掌握的步驟.

  2.熟練運(yùn)用代入法解簡(jiǎn)單的二元一次方程組.

 。ǘ┠芰τ(xùn)練點(diǎn)

  1.培養(yǎng)學(xué)生的分析能力,能迅速在所給的二元一次方程組中,選擇一個(gè)系數(shù)較簡(jiǎn)單的方程進(jìn)行變形.

  2.訓(xùn)練學(xué)生的運(yùn)算技巧,養(yǎng)成檢驗(yàn)的習(xí)慣.

 。ㄈ┑掠凉B透點(diǎn)

  消元,化未知為已知的數(shù)學(xué)思想.

  (四)美育滲透點(diǎn)

  通過(guò)本節(jié)課的學(xué)習(xí),滲透化歸的數(shù)學(xué)美,以及方程組的解所體現(xiàn)出來(lái)的奇異的數(shù)學(xué)美.

  二、學(xué)法引導(dǎo)

  1.教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、練習(xí)法,嘗試指導(dǎo)法.

  2.學(xué)生學(xué)法:在前面已經(jīng)學(xué)過(guò)一元一次方程的解法,求二元一次方程組的解關(guān)鍵是化二元方程為一元方程,故在求解過(guò)程中始終應(yīng)抓住消元的思想方法.

  三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

 。ǎ┲攸c(diǎn)

  使學(xué)生會(huì).

  (二)難點(diǎn)

  靈活運(yùn)用代入法的技巧.

 。ㄈ┮牲c(diǎn)

  如何“消元”,把“二元”轉(zhuǎn)化為“一元”.

  (四)解決辦法

  一方面復(fù)習(xí)用一個(gè)未知量表示另一個(gè)未知量的方法,另一方面學(xué)會(huì)選擇用一個(gè)系數(shù)較簡(jiǎn)單的方程進(jìn)行變形:

  四、課時(shí)安排

  一課時(shí).

  五、教具學(xué)具準(zhǔn)備

  電腦或投影儀、自制膠片.

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  1.教師設(shè)問(wèn)怎樣用一個(gè)未知量表示另一個(gè)未知量,并比較哪種表示形式更簡(jiǎn)單,如 等.

  2.通過(guò)課本中香蕉、蘋果的應(yīng)用問(wèn)題,引導(dǎo)學(xué)生列出一元一次方程或二元一次方程組,并通過(guò)比較、嘗試,探索出化二元為一元的解方程組的方法.

  3.再通過(guò)比較、嘗試,探索出選一個(gè)系數(shù)較簡(jiǎn)單的方程變形,通過(guò)代入法求方程組解的辦法更簡(jiǎn)便,并尋找出求解的規(guī)律.

  七、教學(xué)步驟 

 。ǎ┟鞔_目標(biāo)

  本節(jié)課我們將學(xué)習(xí)用代入法求二元一次方程組的解.

 。ǘ┱w感知

  從復(fù)習(xí)用一個(gè)未知量表達(dá)另一個(gè)未知量的方法,從而導(dǎo)入  運(yùn)用代入法化二元為一元方程的求解過(guò)程,即利用代入消元法求二元一次方程組的解的辦法.

 。ㄈ┙虒W(xué)步驟 

  1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入  

  (1)已知方程 ,先用含 的代數(shù)式表示 ,再用含 的代數(shù)式表示 .并比較哪一種形式比較簡(jiǎn)單.

 。2)選擇題:

  二元一次方程組 的解是

  A. B. C. D.

  【教法說(shuō)明】 第(1)題為打下基礎(chǔ);第(2)題既復(fù)習(xí)了上節(jié)課的重點(diǎn),又成為導(dǎo)入  新課的材料.

  通過(guò)上節(jié)課的學(xué)習(xí),我們會(huì)檢驗(yàn)一對(duì)數(shù)值是否為某個(gè)二元一次方程組的解.那么,已知一個(gè)二元一次方程組,應(yīng)該怎樣求出它的解呢?這節(jié)課我們就來(lái)學(xué)習(xí).

  這樣導(dǎo)入  ,可以激發(fā)學(xué)生的求知欲.

  2.探索新知,講授新課

  香蕉的售價(jià)為5元/千克,蘋果的售價(jià)為3元/千克,小華共買了香蕉和蘋果9千克,付款33元,香蕉和蘋果各買了多少千克?

  學(xué)生活動(dòng):分別列出一元一次方程和二元一次方程組,兩個(gè)學(xué)生板演.

  設(shè)買了香蕉 千克,那么蘋果買了 千克,根據(jù)題意,得

  設(shè)買了香蕉 千克,買了蘋果 千克,得

  上面的一元一次方程我們會(huì)解,能否把二元一次方程組轉(zhuǎn)化為一元一次方程呢,由方程①可以得到    ③,把方程②中的 轉(zhuǎn)換成 ,也就是把方程③代入方程②,就可以得到 .這樣,我們就把二元一次方程組轉(zhuǎn)化成了一元一次方程,由這個(gè)方程就可以求出 了.

  解:由①得:      ③

  把③代入②,得:

  ∴

  把 代入③,得:

  ∴

  【教法說(shuō)明】解二元一次方程組與解一元一次方程相比較,向?qū)W生展示了知識(shí)的發(fā)生過(guò)程,這對(duì)于學(xué)生知識(shí)的形成十分重要.

  上面解二元一次方程組的方法,就是代入消元法.你能簡(jiǎn)單說(shuō)說(shuō)的基本思路嗎?

  學(xué)生活動(dòng):小組討論,選代表發(fā)言,教師進(jìn)行指導(dǎo).糾正后歸納:設(shè)法消去一個(gè)未知數(shù),把二元一次方程組轉(zhuǎn)化為一元一次方程.

  例1  解方程組

  (1)觀察上面的方程組,應(yīng)該如何消元?(把①代入②)

 。2)把①代入②后可消掉 ,得到關(guān)于 的一元一次方程,求出 .

 。3)求出 后代入哪個(gè)方程中求 比較簡(jiǎn)單?(①)

  學(xué)生活動(dòng):依次回答問(wèn)題后,教師板書

  解:把①代入②,得

  ∴

  把 代入①,得

  ∴

  如何檢驗(yàn)得到的結(jié)果是否正確?

  學(xué)生活動(dòng):口答檢驗(yàn).

  教師:要把所得結(jié)果分別代入原方程組的每一個(gè)方程中.

  【教法說(shuō)明】給出例1后提出的三個(gè)問(wèn)題,恰好是學(xué)生的思維過(guò)程,明確了解題思路;教師板演例1,規(guī)范了解二元一次方程組的解題格式;通過(guò)檢驗(yàn),可使學(xué)生養(yǎng)成嚴(yán)謹(jǐn)認(rèn)真的學(xué)習(xí)習(xí)慣.

  例2  解方程組

  要把某個(gè)方程化成如例1中方程①的形式后,代入另一個(gè)方程中才能消元.方程②中 的系數(shù)是1,比較簡(jiǎn)單.因此,可以先將方程②變形,用含 的代數(shù)式表示 ,再代入方程①求解.

  學(xué)生活動(dòng):嘗試完成例2.

  教師巡視指導(dǎo),發(fā)現(xiàn)并糾正學(xué)生的問(wèn)題,把書寫過(guò)程規(guī)范化.

  解:由②,得     ③

  把③代入①,得

  ∴ 

  ∴

  把 代入③,得

  ∴

  ∴

  檢驗(yàn)后,師生共同討論:

  (1)由②得到③后,再代入②可以嗎?(不可以)為什么?(得到的是恒等式,不能求解)

 。2)把 代入①或②可以求出 嗎?(可以)代入③有什么好處?(運(yùn)算簡(jiǎn)便)

  學(xué)生活動(dòng):根據(jù)例1、例2的解題過(guò)程,嘗試總結(jié)的一般步驟,討論后選代表發(fā)言.之后,看課本第12頁(yè),用幾個(gè)字概括每個(gè)步驟.

  教師板書:

 。1)變形( )

 。2)代入消元( )

  (3)解一元一次方程得( )

  (4)把 代入 求解

  練習(xí):P13  1.(1)(2);P14  2.(1)(2).

  3.變式訓(xùn)練,培養(yǎng)能力

 、儆 可以得到用 表示 .

  ②在 中,當(dāng) 時(shí), ;當(dāng) 時(shí), ,則 ; .

  ③選擇:若 是方程組 的解,則( )

  A. B. C. D.

 。ㄋ模┛偨Y(jié)、擴(kuò)展

  1.解二元一次方程組的思想: .

  2.的步驟.

  3.的技巧:①變形的技巧②代入的技巧.

  通過(guò)這節(jié)課的學(xué)習(xí),我們要熟練運(yùn),并能檢驗(yàn)結(jié)果是否正確.

  八、布置作業(yè) 

 。ㄒ唬┍刈鲱}:P15 1.(2)(4),2.(1)(2)(3)(4).

  (二)選做題:P15 B組1.

  參考答案

 。ㄒ唬1.(2) (4)

  2.(1) (2) (3) (4)

 。ǘ ,

7.2解二元一次方程組 篇9

  教學(xué)建議

  一、重點(diǎn)、難點(diǎn)分析

  本節(jié)的教學(xué)重點(diǎn)是使學(xué)生學(xué)會(huì)用代入法.教學(xué)難點(diǎn)在于靈活運(yùn)用代入法,這要通過(guò)一定數(shù)量的練習(xí)來(lái)解決;另一個(gè)難點(diǎn)在于用代入法求出一個(gè)未知數(shù)的值后,不知道應(yīng)把它代入哪一個(gè)方程求另一個(gè)未知數(shù)的值比較簡(jiǎn)便.

  解二元一次方程組的關(guān)鍵在于消元,即將“二元”轉(zhuǎn)化為“一元”.我們是通過(guò)等量代換的方法,消去一個(gè)未知數(shù),從而求得原方程組的解.

  二、知識(shí)結(jié)構(gòu)

  三、教法建議

  1.關(guān)于檢驗(yàn)方程組的解的問(wèn)題.教材指出:“檢驗(yàn)時(shí),需將所求得的一對(duì)未知數(shù)的值分別代入原方程組里的每一個(gè)方程中,看看方程的左、右兩邊是不是相等.”教學(xué)時(shí)要強(qiáng)調(diào)“原方程組”和“每一個(gè)”這兩點(diǎn).檢驗(yàn)的作用,一是使學(xué)生進(jìn)一步明確代入法是求方程組的解的一種基本方法,通過(guò)代入消元的確可以求得方程組的解二是進(jìn)一步鞏固二元一次方程組的解的概念,強(qiáng)調(diào)

  這一對(duì)數(shù)值才是原方程組的解,并且它們必須使兩個(gè)方程左、右兩邊的值都相等;三是因?yàn)槲覀儧](méi)有用方程組的同解原理而是用代換(等式的傳遞)來(lái)解方程組的,所以有必要檢驗(yàn)求出來(lái)的這一對(duì)數(shù)值是不是原方程組的解;四是為了杜絕變形和計(jì)算時(shí)發(fā)生的錯(cuò)誤.檢驗(yàn)可以口算或在草稿紙上演算,教科書中沒(méi)有寫出.

  2.教學(xué)時(shí),應(yīng)結(jié)合具體的例子指出這里解二元一次方程組的關(guān)鍵在于消元,即把“二元”轉(zhuǎn)化為“一元”.我們是通過(guò)等量代換的方法,消去一個(gè)未知數(shù),從而求得原方程組的解.早一些指出消元思想和把“二元”轉(zhuǎn)化為“一元”的方法,這樣,學(xué)生就能有較強(qiáng)的目的性.

  3.教師講解例題時(shí)要注意由簡(jiǎn)到繁,由易到難,逐步加深.隨著例題由簡(jiǎn)到繁,由易到難,要特別強(qiáng)調(diào)解方程組時(shí)應(yīng)努力使變形后的方程比較簡(jiǎn)單和代入后化簡(jiǎn)比較容易.這樣不僅可以求解迅速,而且可以減少錯(cuò)誤.

  一、素質(zhì)教育目標(biāo)

  (一)知識(shí)教學(xué)點(diǎn)

  1.掌握的步驟.

  2.熟練運(yùn)用代入法解簡(jiǎn)單的二元一次方程組.

 。ǘ┠芰τ(xùn)練點(diǎn)

  1.培養(yǎng)學(xué)生的分析能力,能迅速在所給的二元一次方程組中,選擇一個(gè)系數(shù)較簡(jiǎn)單的方程進(jìn)行變形.

  2.訓(xùn)練學(xué)生的運(yùn)算技巧,養(yǎng)成檢驗(yàn)的習(xí)慣.

 。ㄈ┑掠凉B透點(diǎn)

  消元,化未知為已知的數(shù)學(xué)思想.

  (四)美育滲透點(diǎn)

  通過(guò)本節(jié)課的學(xué)習(xí),滲透化歸的數(shù)學(xué)美,以及方程組的解所體現(xiàn)出來(lái)的奇異的數(shù)學(xué)美.

  二、學(xué)法引導(dǎo)

  1.教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、練習(xí)法,嘗試指導(dǎo)法.

  2.學(xué)生學(xué)法:在前面已經(jīng)學(xué)過(guò)一元一次方程的解法,求二元一次方程組的解關(guān)鍵是化二元方程為一元方程,故在求解過(guò)程中始終應(yīng)抓住消元的思想方法.

  三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

 。ǎ┲攸c(diǎn)

  使學(xué)生會(huì).

 。ǘ╇y點(diǎn)

  靈活運(yùn)用代入法的技巧.

 。ㄈ┮牲c(diǎn)

  如何“消元”,把“二元”轉(zhuǎn)化為“一元”.

 。ㄋ模┙鉀Q辦法

  一方面復(fù)習(xí)用一個(gè)未知量表示另一個(gè)未知量的方法,另一方面學(xué)會(huì)選擇用一個(gè)系數(shù)較簡(jiǎn)單的方程進(jìn)行變形:

  四、課時(shí)安排

  一課時(shí).

  五、教具學(xué)具準(zhǔn)備

  電腦或投影儀、自制膠片.

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  1.教師設(shè)問(wèn)怎樣用一個(gè)未知量表示另一個(gè)未知量,并比較哪種表示形式更簡(jiǎn)單,如 等.

  2.通過(guò)課本中香蕉、蘋果的應(yīng)用問(wèn)題,引導(dǎo)學(xué)生列出一元一次方程或二元一次方程組,并通過(guò)比較、嘗試,探索出化二元為一元的解方程組的方法.

  3.再通過(guò)比較、嘗試,探索出選一個(gè)系數(shù)較簡(jiǎn)單的方程變形,通過(guò)代入法求方程組解的辦法更簡(jiǎn)便,并尋找出求解的規(guī)律.

  七、教學(xué)步驟

 。ǎ┟鞔_目標(biāo)

  本節(jié)課我們將學(xué)習(xí)用代入法求二元一次方程組的解.

 。ǘ┱w感知

  從復(fù)習(xí)用一個(gè)未知量表達(dá)另一個(gè)未知量的方法,從而導(dǎo)入  運(yùn)用代入法化二元為一元方程的求解過(guò)程,即利用代入消元法求二元一次方程組的解的辦法.

 。ㄈ教學(xué)步驟

  1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入  

 。1)已知方程 ,先用含 的代數(shù)式表示 ,再用含 的代數(shù)式表示 .并比較哪一種形式比較簡(jiǎn)單.

 。2)選擇題:

  二元一次方程組 的解是

  A. B. C. D.

  【教法說(shuō)明】 第(1)題為打下基礎(chǔ);第(2)題既復(fù)習(xí)了上節(jié)課的重點(diǎn),又成為導(dǎo)入  新課的材料.

  通過(guò)上節(jié)課的學(xué)習(xí),我們會(huì)檢驗(yàn)一對(duì)數(shù)值是否為某個(gè)二元一次方程組的解.那么,已知一個(gè)二元一次方程組,應(yīng)該怎樣求出它的解呢?這節(jié)課我們就來(lái)學(xué)習(xí).

  這樣導(dǎo)入  ,可以激發(fā)學(xué)生的求知欲.

  2.探索新知,講授新課

  香蕉的售價(jià)為5元/千克,蘋果的售價(jià)為3元/千克,小華共買了香蕉和蘋果9千克,付款33元,香蕉和蘋果各買了多少千克?

  學(xué)生活動(dòng):分別列出一元一次方程和二元一次方程組,兩個(gè)學(xué)生板演.

  設(shè)買了香蕉 千克,那么蘋果買了 千克,根據(jù)題意,得

  設(shè)買了香蕉 千克,買了蘋果 千克,得

  上面的一元一次方程我們會(huì)解,能否把二元一次方程組轉(zhuǎn)化為一元一次方程呢,由方程①可以得到    ③,把方程②中的 轉(zhuǎn)換成 ,也就是把方程③代入方程②,就可以得到 .這樣,我們就把二元一次方程組轉(zhuǎn)化成了一元一次方程,由這個(gè)方程就可以求出 了.

  解:由①得:      ③

  把③代入②,得:

  ∴

  把 代入③,得:

  ∴

  【教法說(shuō)明】解二元一次方程組與解一元一次方程相比較,向?qū)W生展示了知識(shí)的發(fā)生過(guò)程,這對(duì)于學(xué)生知識(shí)的形成十分重要.

  上面解二元一次方程組的方法,就是代入消元法.你能簡(jiǎn)單說(shuō)說(shuō)的基本思路嗎?

  學(xué)生活動(dòng):小組討論,選代表發(fā)言,教師進(jìn)行指導(dǎo).糾正后歸納:設(shè)法消去一個(gè)未知數(shù),把二元一次方程組轉(zhuǎn)化為一元一次方程.

  例1  解方程組

 。1)觀察上面的方程組,應(yīng)該如何消元?(把①代入②)

  (2)把①代入②后可消掉 ,得到關(guān)于 的一元一次方程,求出 .

 。3)求出 后代入哪個(gè)方程中求 比較簡(jiǎn)單?(①)

  學(xué)生活動(dòng):依次回答問(wèn)題后,教師板書

  解:把①代入②,得

  ∴

  把 代入①,得

  ∴

  如何檢驗(yàn)得到的結(jié)果是否正確?

  學(xué)生活動(dòng):口答檢驗(yàn).

  教師:要把所得結(jié)果分別代入原方程組的每一個(gè)方程中.

  【教法說(shuō)明】給出例1后提出的三個(gè)問(wèn)題,恰好是學(xué)生的思維過(guò)程,明確了解題思路;教師板演例1,規(guī)范了解二元一次方程組的解題格式;通過(guò)檢驗(yàn),可使學(xué)生養(yǎng)成嚴(yán)謹(jǐn)認(rèn)真的學(xué)習(xí)習(xí)慣.

  例2  解方程組

  要把某個(gè)方程化成如例1中方程①的形式后,代入另一個(gè)方程中才能消元.方程②中 的系數(shù)是1,比較簡(jiǎn)單.因此,可以先將方程②變形,用含 的代數(shù)式表示 ,再代入方程①求解.

  學(xué)生活動(dòng):嘗試完成例2.

  教師巡視指導(dǎo),發(fā)現(xiàn)并糾正學(xué)生的問(wèn)題,把書寫過(guò)程規(guī)范化.

  解:由②,得     ③

  把③代入①,得

  ∴ 

  ∴

  把 代入③,得

  ∴

  ∴

  檢驗(yàn)后,師生共同討論:

  (1)由②得到③后,再代入②可以嗎?(不可以)為什么?(得到的是恒等式,不能求解)

 。2)把 代入①或②可以求出 嗎?(可以)代入③有什么好處?(運(yùn)算簡(jiǎn)便)

  學(xué)生活動(dòng):根據(jù)例1、例2的解題過(guò)程,嘗試總結(jié)的一般步驟,討論后選代表發(fā)言.之后,看課本第12頁(yè),用幾個(gè)字概括每個(gè)步驟.

  教師板書

 。1)變形( )

 。2)代入消元( )

 。3)解一元一次方程得( )

 。4)把 代入 求解

  練習(xí):P13  1.(1)(2);P14  2.(1)(2).

  3.變式訓(xùn)練,培養(yǎng)能力

 、儆 可以得到用 表示 .

  ②在 中,當(dāng) 時(shí), ;當(dāng) 時(shí), ,則 ; .

 、圻x擇:若 是方程組 的解,則( )

  A. B. C. D.

 。ㄋ模┛偨Y(jié)、擴(kuò)展

  1.解二元一次方程組的思想: .

  2.的步驟.

  3.的技巧:①變形的技巧②代入的技巧.

  通過(guò)這節(jié)課的學(xué)習(xí),我們要熟練運(yùn),并能檢驗(yàn)結(jié)果是否正確.

  八、布置作業(yè) 

  (一)必做題:P15 1.(2)(4),2.(1)(2)(3)(4).

 。ǘ┻x做題:P15 B組1.

  參考答案

 。ㄒ唬1.(2) (4)

  2.(1) (2) (3) (4)

 。ǘ ,

7.2解二元一次方程組 篇10

  教學(xué)建議

  1.教材分析

 。1)知識(shí)結(jié)構(gòu)

 。2)重點(diǎn)、難點(diǎn)分析

  重點(diǎn):本小節(jié)的重點(diǎn)是使學(xué)生學(xué)會(huì).這也是一種全新的知識(shí),與在一元一次方程兩邊都加上、減去同一個(gè)數(shù)或同一個(gè)整式,或者都乘以、除以同一個(gè)非零數(shù)的情況是不一樣的,但運(yùn)用這項(xiàng)知識(shí)(這里也表現(xiàn)為一種方法),有時(shí)可以簡(jiǎn)捷地求出二元一次方程組的解,因此學(xué)生同樣會(huì)表現(xiàn)出一種極大的興趣.必須充分利用學(xué)生學(xué)會(huì)這種方法的積極性.加減(消元)法是解二元一次方程組的基本方法之一,因此要讓學(xué)生學(xué)會(huì),并能靈活運(yùn)用.這種方法同樣是解三元一次方程組和某些二元二次方程組的基本方法,在教學(xué)中必須引起足夠重視.

  難點(diǎn):靈活運(yùn)用加減法的技巧,以便將方程變形為比較簡(jiǎn)單和計(jì)算比較簡(jiǎn)便,這也要通過(guò)一定數(shù)量的練習(xí)來(lái)解決.

  2.教法建議

 。1)本節(jié)是通過(guò)一個(gè)引例,介紹了加減法解方程組的基本思想和解題過(guò)程.教學(xué)時(shí),要引導(dǎo)學(xué)生觀察這個(gè)方程組中未知數(shù)系數(shù)的特點(diǎn).通過(guò)觀察讓學(xué)生說(shuō)出,在兩個(gè)方程中y的系數(shù)互為相反數(shù)或在兩個(gè)方程中x的系數(shù)相等,讓學(xué)生自己動(dòng)腦想一想,怎么消元比較簡(jiǎn)便,然后引出加減消元法.

 。2)講完加減法后,課本通過(guò)三個(gè)例題加以鞏固,這三個(gè)例題是由淺入深的,講解時(shí)也要先讓學(xué)生觀察每個(gè)方程組未知數(shù)系數(shù)的特點(diǎn),然后讓學(xué)生說(shuō)出每個(gè)方程組的解法,例題1老師自己板書,剩下的兩個(gè)例題讓學(xué)生上黑板板書,然后老師點(diǎn)評(píng).

 。3)講解完本節(jié)后,教師應(yīng)引導(dǎo)學(xué)生比較代入法與加減法這兩種方法,這兩種方法雖有不同,但實(shí)質(zhì)都是消元,即通過(guò)消去一個(gè)未知數(shù),把“二元”轉(zhuǎn)化為“一元”.也就是說(shuō):

  這時(shí)學(xué)生對(duì)解題方法比較熟悉,但還沒(méi)有上升到理論的高度,這時(shí)教師應(yīng)及時(shí)點(diǎn)撥、滲透化歸轉(zhuǎn)化的思想,并指出這是具有普遍意義的分析問(wèn)題、解決問(wèn)題的思想方法.

  教學(xué)設(shè)計(jì)示例

 。ǖ谝徽n時(shí))

  一、素質(zhì)教育目標(biāo)

 。ㄒ唬┲R(shí)教學(xué)點(diǎn)

  1.使學(xué)生掌握的步驟.

  2.能運(yùn).

 。ǘ┠芰τ(xùn)練點(diǎn)

  1.培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力.

  2.訓(xùn)練學(xué)生的運(yùn)算技巧.

 。ㄈ┑掠凉B透點(diǎn)

  消元,化未知為已知的轉(zhuǎn)化思想.

 。ㄋ模┟烙凉B透點(diǎn)

  滲透化歸的數(shù)學(xué)美.

  二、學(xué)法引導(dǎo)

  1.教學(xué)方法:談話法、討論法.

  2.學(xué)生學(xué)法:觀察各未知量前面系數(shù)的特征,只要將相同未知量前的系數(shù)化為絕對(duì)值相等的值后即可利用加減法進(jìn)行消元,同時(shí)在運(yùn)算中注意歸納解題的技巧和解題的方法.

  三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

 。ǎ┲攸c(diǎn)

  使學(xué)生學(xué)會(huì).

 。ǘ╇y點(diǎn)

  靈活運(yùn)用加減消元法的技巧.

 。ㄈ┮牲c(diǎn)

  如何“消元”,把“二元”轉(zhuǎn)化為“一元”.

  (四)解決辦法

  只要將相同未知量前的系數(shù)化為絕對(duì)值相等的值即可利用加減法進(jìn)行消元.

  四、課時(shí)安排

  一課時(shí).

  五、教具學(xué)具準(zhǔn)備

  投影儀、膠片.

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  1.教師通過(guò)復(fù)習(xí)上節(jié)課代入法解二元一次方程組的方法及其解題思想,引入除了消元法還有其他方法嗎?從而導(dǎo)入  新課即加減法解二元一次方程組.

  2.通過(guò)引例進(jìn)一步讓學(xué)生探究是用代入法還是用加減法解方程組更簡(jiǎn)單,讓學(xué)生進(jìn)一步明確用加減法解題的優(yōu)越性.

  3.通過(guò)反復(fù)的訓(xùn)練、歸納、再訓(xùn)練、再歸納,從而積累用加減法解方程組的經(jīng)驗(yàn),進(jìn)而上升到理論.

  七、教學(xué)步驟 

 。ǎ┟鞔_目標(biāo)

  本節(jié)課通過(guò)復(fù)習(xí)代入法從而引入另一種消元的辦法,即加減法解二元一次方程組.

  (二)整體感知

  加減法解二元一次方程組的關(guān)鍵在于將相同字母的系數(shù)化為絕對(duì)值相等的值,即可使用加減法消元.故在教學(xué)中應(yīng)反復(fù)教會(huì)學(xué)生觀察并抓住解題的特征及辦法從而方便解題.

 。ㄈ┙虒W(xué)過(guò)程 

  1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入  

 。1)用代入法解二元一次方程組的基本思想是什么?

 。2)用代入法解下列方程組,并檢驗(yàn)所得結(jié)果是否正確.

  學(xué)生活動(dòng):口答第(1)題,在練習(xí)本上完成第(2)題,一個(gè)同學(xué)說(shuō)出結(jié)果.

  上面的方程組中,我們用代入法消去了一個(gè)未知數(shù),將“二元”轉(zhuǎn)化為“一元”,從而得到了方程組的解.對(duì)于二元一次方程組,是否存在其他方法,也可以消去一個(gè)未知數(shù),達(dá)到化“二元”為“一元”的目的呢?這就是我們這節(jié)課將要學(xué)習(xí)的內(nèi)容.

  【教法說(shuō)明】由練習(xí)導(dǎo)入  新課,既復(fù)習(xí)了舊知識(shí),又引出了新課題,教學(xué)過(guò)程 中還可以進(jìn)行代入法和加減法的對(duì)比,訓(xùn)練學(xué)生根據(jù)題目的特點(diǎn)選取適當(dāng)?shù)姆椒ń忸}.

  2.探索新知,講授新課

  第(2)題的兩個(gè)方程中,未知數(shù) 的系數(shù)有什么特點(diǎn)?(互為相反數(shù))根據(jù)等式的性質(zhì),如果把這兩個(gè)方程的左邊與左邊相加,右邊與右邊相加,就可以消掉 ,得到一個(gè)一元一次方程,進(jìn)而求得二元一次方程組的解.

  解:①+②,得

  把 代入①,得

  ∴

  ∴

  學(xué)生活動(dòng):比較用這種方法得到的 、 值是否與用代入法得到的相同.(相同)

  上面方程組的兩個(gè)方程中,因?yàn)?的系數(shù)互為相反數(shù),所以我們把兩個(gè)方程相加,就消去了 .觀察一下, 的系數(shù)有何特點(diǎn)?(相等)方程①和方程②經(jīng)過(guò)怎樣的變化可以消去 ?(相減)

  學(xué)生活動(dòng):觀察、思考,嘗試用①-②消元,解方程組,比較結(jié)果是否與用①+②得到的結(jié)果相同.(相同)

  我們將原方程組的兩個(gè)方程相加或相減,把“二元”化成了“一元”,從而得到了方程組的解.像這種解二元一次方程組的方法叫加減消元法,簡(jiǎn)稱“加減法”.

  提問(wèn):①比較上面解二元一次方程組的方法,是用代入法簡(jiǎn)單,還是用加減法簡(jiǎn)單?(加減法)

 、谠谑裁礂l件下可以用加減法進(jìn)行消元?(某一個(gè)未知數(shù)的系數(shù)相等或互為相反數(shù))

 、凼裁礂l件下用加法、什么條件下用減法?(某個(gè)未知數(shù)的系數(shù)互為相反數(shù)時(shí)用加法,系數(shù)相等時(shí)用減法)

  【教法說(shuō)明】這幾個(gè)問(wèn)題,可使學(xué)生明確使用加減法的條件,體會(huì)在某些條件下使用加減法的優(yōu)越性.

  例1  解方程組

  哪個(gè)未知數(shù)的系數(shù)有特點(diǎn)?( 的系數(shù)相等)把這兩個(gè)方程怎樣變化可以消去 ?(相減)

  學(xué)生活動(dòng):回答問(wèn)題后,獨(dú)立完成例1,一個(gè)學(xué)生板演.

  解:①-②,得

  ∴

  把 代入②,得

  ∴

  ∴

  ∴

 。1)檢驗(yàn)一下,所得結(jié)果是否正確?

 。2)用②-①可以消掉 嗎?(可以)是用①-②,還是用②-①計(jì)算比較簡(jiǎn)單?(①-②簡(jiǎn)單)

 。3)把 代入①, 的值是多少?( ),是代入①計(jì)算簡(jiǎn)單還是代入②計(jì)算簡(jiǎn)單?(代入系數(shù)較簡(jiǎn)單的方程)

  練習(xí):P23  l.(l)(2)(3),分組練習(xí),并把學(xué)生的解題過(guò)程在投影儀上顯示.

  小結(jié):的條件是某個(gè)未知數(shù)的系數(shù)絕對(duì)值相等.

  例2  解方程組

 。1)上面的方程組是否符合用加減法消元的條件?(不符合)

  (2)如何轉(zhuǎn)化可使某個(gè)未知數(shù)系數(shù)的絕對(duì)值相等?(①×2或②×3)

  歸納:如果兩個(gè)方程中,未知數(shù)系數(shù)的絕對(duì)值都不相等,可以在方程兩邊部乘以同一個(gè)適當(dāng)?shù)臄?shù),使兩個(gè)方程中有一個(gè)未知數(shù)的系數(shù)絕對(duì)值相等,然后再加減消元.

  學(xué)生活動(dòng):獨(dú)立解題,并把一名學(xué)生解題過(guò)程在投影儀上顯示.

  學(xué)生活動(dòng):總結(jié)的步驟.

 、僮冃,使某個(gè)未知數(shù)的系數(shù)絕對(duì)值相等.

 、诩訙p消元.

 、劢庖辉淮畏匠.

  ④代入得另一個(gè)未知數(shù)的值,從而得方程組的解.

  3.嘗試反饋,鞏固知識(shí)

  練習(xí):P23  1.(4)(5).

  【教法說(shuō)明】通過(guò)練習(xí),使學(xué)生熟練地并能在練習(xí)中摸索運(yùn)算技巧,培養(yǎng)能力.

  4.變式訓(xùn)練,培養(yǎng)能力

  (1)選擇:二元一次方程組 的解是( )

  A. B. C. D.

 。2)已知 ,求 、 的值.

  學(xué)生活動(dòng):第(1)題口答,第(2)題在練習(xí)本上完成.

  【教法說(shuō)明】第(1)題可以用解方程組的方法得解,也可以把四組值分別代入原方程組中,利用檢驗(yàn)的方法解,這道題能訓(xùn)練學(xué)生思維的靈活性;第(2)題通過(guò)分析,學(xué)生可得方程組 從而求得 、 的值.此題可以培養(yǎng)學(xué)生分析問(wèn)題,解決問(wèn)題的綜合能力.

  (四)總結(jié)、擴(kuò)展

  1.的思想:

  2.的條件:某一未知數(shù)系數(shù)絕對(duì)值相等.

  3.的步驟:

  八、布置作業(yè) 

 。ㄒ唬┍刈鲱}:P24 1.

  (二)選做題:P25 B組1.

 。ㄈ╊A(yù)習(xí):下節(jié)課內(nèi)容.

  參考答案

 。ㄒ唬1) (2) (3) (4)

  (二)1.(1)與(4) (2)與(3)

7.2解二元一次方程組 篇11

  教學(xué)建議

  1.教材分析

 。1)知識(shí)結(jié)構(gòu)

 。2)重點(diǎn)、難點(diǎn)分析

  重點(diǎn):本小節(jié)的重點(diǎn)是使學(xué)生學(xué)會(huì).這也是一種全新的知識(shí),與在一元一次方程兩邊都加上、減去同一個(gè)數(shù)或同一個(gè)整式,或者都乘以、除以同一個(gè)非零數(shù)的情況是不一樣的,但運(yùn)用這項(xiàng)知識(shí)(這里也表現(xiàn)為一種方法),有時(shí)可以簡(jiǎn)捷地求出二元一次方程組的解,因此學(xué)生同樣會(huì)表現(xiàn)出一種極大的興趣.必須充分利用學(xué)生學(xué)會(huì)這種方法的積極性.加減(消元)法是解二元一次方程組的基本方法之一,因此要讓學(xué)生學(xué)會(huì),并能靈活運(yùn)用.這種方法同樣是解三元一次方程組和某些二元二次方程組的基本方法,在教學(xué)中必須引起足夠重視.

  難點(diǎn):靈活運(yùn)用加減法的技巧,以便將方程變形為比較簡(jiǎn)單和計(jì)算比較簡(jiǎn)便,這也要通過(guò)一定數(shù)量的練習(xí)來(lái)解決.

  2.教法建議

 。1)本節(jié)是通過(guò)一個(gè)引例,介紹了加減法解方程組的基本思想和解題過(guò)程.教學(xué)時(shí),要引導(dǎo)學(xué)生觀察這個(gè)方程組中未知數(shù)系數(shù)的特點(diǎn).通過(guò)觀察讓學(xué)生說(shuō)出,在兩個(gè)方程中y的系數(shù)互為相反數(shù)或在兩個(gè)方程中x的系數(shù)相等,讓學(xué)生自己動(dòng)腦想一想,怎么消元比較簡(jiǎn)便,然后引出加減消元法.

 。2)講完加減法后,課本通過(guò)三個(gè)例題加以鞏固,這三個(gè)例題是由淺入深的,講解時(shí)也要先讓學(xué)生觀察每個(gè)方程組未知數(shù)系數(shù)的特點(diǎn),然后讓學(xué)生說(shuō)出每個(gè)方程組的解法,例題1老師自己板書,剩下的兩個(gè)例題讓學(xué)生上黑板板書,然后老師點(diǎn)評(píng).

 。3)講解完本節(jié)后,教師應(yīng)引導(dǎo)學(xué)生比較代入法與加減法這兩種方法,這兩種方法雖有不同,但實(shí)質(zhì)都是消元,即通過(guò)消去一個(gè)未知數(shù),把“二元”轉(zhuǎn)化為“一元”.也就是說(shuō):

  這時(shí)學(xué)生對(duì)解題方法比較熟悉,但還沒(méi)有上升到理論的高度,這時(shí)教師應(yīng)及時(shí)點(diǎn)撥、滲透化歸轉(zhuǎn)化的思想,并指出這是具有普遍意義的分析問(wèn)題、解決問(wèn)題的思想方法.

  教學(xué)設(shè)計(jì)示例

 。ǖ谝徽n時(shí))

  一、素質(zhì)教育目標(biāo)

 。ㄒ唬┲R(shí)教學(xué)點(diǎn)

  1.使學(xué)生掌握的步驟.

  2.能運(yùn).

 。ǘ┠芰τ(xùn)練點(diǎn)

  1.培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力.

  2.訓(xùn)練學(xué)生的運(yùn)算技巧.

 。ㄈ┑掠凉B透點(diǎn)

  消元,化未知為已知的轉(zhuǎn)化思想.

 。ㄋ模┟烙凉B透點(diǎn)

  滲透化歸的數(shù)學(xué)美.

  二、學(xué)法引導(dǎo)

  1.教學(xué)方法:談話法、討論法.

  2.學(xué)生學(xué)法:觀察各未知量前面系數(shù)的特征,只要將相同未知量前的系數(shù)化為絕對(duì)值相等的值后即可利用加減法進(jìn)行消元,同時(shí)在運(yùn)算中注意歸納解題的技巧和解題的方法.

  三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

  (-)重點(diǎn)

  使學(xué)生學(xué)會(huì).

 。ǘ╇y點(diǎn)

  靈活運(yùn)用加減消元法的技巧.

  (三)疑點(diǎn)

  如何“消元”,把“二元”轉(zhuǎn)化為“一元”.

 。ㄋ模┙鉀Q辦法

  只要將相同未知量前的系數(shù)化為絕對(duì)值相等的值即可利用加減法進(jìn)行消元.

  四、課時(shí)安排

  一課時(shí).

  五、教具學(xué)具準(zhǔn)備

  投影儀、膠片.

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  1.教師通過(guò)復(fù)習(xí)上節(jié)課代入法解二元一次方程組的方法及其解題思想,引入除了消元法還有其他方法嗎?從而導(dǎo)入  新課即加減法解二元一次方程組.

  2.通過(guò)引例進(jìn)一步讓學(xué)生探究是用代入法還是用加減法解方程組更簡(jiǎn)單,讓學(xué)生進(jìn)一步明確用加減法解題的優(yōu)越性.

  3.通過(guò)反復(fù)的訓(xùn)練、歸納、再訓(xùn)練、再歸納,從而積累用加減法解方程組的經(jīng)驗(yàn),進(jìn)而上升到理論.

  七、教學(xué)步驟

  (-)明確目標(biāo)

  本節(jié)課通過(guò)復(fù)習(xí)代入法從而引入另一種消元的辦法,即加減法解二元一次方程組.

 。ǘ┱w感知

  加減法解二元一次方程組的關(guān)鍵在于將相同字母的系數(shù)化為絕對(duì)值相等的值,即可使用加減法消元.故在教學(xué)中應(yīng)反復(fù)教會(huì)學(xué)生觀察并抓住解題的特征及辦法從而方便解題.

 。ㄈ教學(xué)過(guò)程

  1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入  

 。1)用代入法解二元一次方程組的基本思想是什么?

 。2)用代入法解下列方程組,并檢驗(yàn)所得結(jié)果是否正確.

  學(xué)生活動(dòng):口答第(1)題,在練習(xí)本上完成第(2)題,一個(gè)同學(xué)說(shuō)出結(jié)果.

  上面的方程組中,我們用代入法消去了一個(gè)未知數(shù),將“二元”轉(zhuǎn)化為“一元”,從而得到了方程組的解.對(duì)于二元一次方程組,是否存在其他方法,也可以消去一個(gè)未知數(shù),達(dá)到化“二元”為“一元”的目的呢?這就是我們這節(jié)課將要學(xué)習(xí)的內(nèi)容.

  【教法說(shuō)明】由練習(xí)導(dǎo)入  新課,既復(fù)習(xí)了舊知識(shí),又引出了新課題,教學(xué)過(guò)程中還可以進(jìn)行代入法和加減法的對(duì)比,訓(xùn)練學(xué)生根據(jù)題目的特點(diǎn)選取適當(dāng)?shù)姆椒ń忸}.

  2.探索新知,講授新課

  第(2)題的兩個(gè)方程中,未知數(shù) 的系數(shù)有什么特點(diǎn)?(互為相反數(shù))根據(jù)等式的性質(zhì),如果把這兩個(gè)方程的左邊與左邊相加,右邊與右邊相加,就可以消掉 ,得到一個(gè)一元一次方程,進(jìn)而求得二元一次方程組的解.

  解:①+②,得

  把 代入①,得

  ∴

  ∴

  學(xué)生活動(dòng):比較用這種方法得到的 、 值是否與用代入法得到的相同.(相同)

  上面方程組的兩個(gè)方程中,因?yàn)?的系數(shù)互為相反數(shù),所以我們把兩個(gè)方程相加,就消去了 .觀察一下, 的系數(shù)有何特點(diǎn)?(相等)方程①和方程②經(jīng)過(guò)怎樣的變化可以消去 ?(相減)

  學(xué)生活動(dòng):觀察、思考,嘗試用①-②消元,解方程組,比較結(jié)果是否與用①+②得到的結(jié)果相同.(相同)

  我們將原方程組的兩個(gè)方程相加或相減,把“二元”化成了“一元”,從而得到了方程組的解.像這種解二元一次方程組的方法叫加減消元法,簡(jiǎn)稱“加減法”.

  提問(wèn):①比較上面解二元一次方程組的方法,是用代入法簡(jiǎn)單,還是用加減法簡(jiǎn)單?(加減法)

 、谠谑裁礂l件下可以用加減法進(jìn)行消元?(某一個(gè)未知數(shù)的系數(shù)相等或互為相反數(shù))

  ③什么條件下用加法、什么條件下用減法?(某個(gè)未知數(shù)的系數(shù)互為相反數(shù)時(shí)用加法,系數(shù)相等時(shí)用減法)

  【教法說(shuō)明】這幾個(gè)問(wèn)題,可使學(xué)生明確使用加減法的條件,體會(huì)在某些條件下使用加減法的優(yōu)越性.

  例1  解方程組

  哪個(gè)未知數(shù)的系數(shù)有特點(diǎn)?( 的系數(shù)相等)把這兩個(gè)方程怎樣變化可以消去 ?(相減)

  學(xué)生活動(dòng):回答問(wèn)題后,獨(dú)立完成例1,一個(gè)學(xué)生板演.

  解:①-②,得

  ∴

  把 代入②,得

  ∴

  ∴

  ∴

 。1)檢驗(yàn)一下,所得結(jié)果是否正確?

 。2)用②-①可以消掉 嗎?(可以)是用①-②,還是用②-①計(jì)算比較簡(jiǎn)單?(①-②簡(jiǎn)單)

 。3)把 代入①, 的值是多少?( ),是代入①計(jì)算簡(jiǎn)單還是代入②計(jì)算簡(jiǎn)單?(代入系數(shù)較簡(jiǎn)單的方程)

  練習(xí):P23  l.(l)(2)(3),分組練習(xí),并把學(xué)生的解題過(guò)程在投影儀上顯示.

  小結(jié):的條件是某個(gè)未知數(shù)的系數(shù)絕對(duì)值相等.

  例2  解方程組

  (1)上面的方程組是否符合用加減法消元的條件?(不符合)

  (2)如何轉(zhuǎn)化可使某個(gè)未知數(shù)系數(shù)的絕對(duì)值相等?(①×2或②×3)

  歸納:如果兩個(gè)方程中,未知數(shù)系數(shù)的絕對(duì)值都不相等,可以在方程兩邊部乘以同一個(gè)適當(dāng)?shù)臄?shù),使兩個(gè)方程中有一個(gè)未知數(shù)的系數(shù)絕對(duì)值相等,然后再加減消元.

  學(xué)生活動(dòng):獨(dú)立解題,并把一名學(xué)生解題過(guò)程在投影儀上顯示.

  學(xué)生活動(dòng):總結(jié)的步驟.

  ①變形,使某個(gè)未知數(shù)的系數(shù)絕對(duì)值相等.

 、诩訙p消元.

 、劢庖辉淮畏匠.

 、艽氲昧硪粋(gè)未知數(shù)的值,從而得方程組的解.

  3.嘗試反饋,鞏固知識(shí)

  練習(xí):P23  1.(4)(5).

  【教法說(shuō)明】通過(guò)練習(xí),使學(xué)生熟練地并能在練習(xí)中摸索運(yùn)算技巧,培養(yǎng)能力.

  4.變式訓(xùn)練,培養(yǎng)能力

  (1)選擇:二元一次方程組 的解是( )

  A. B. C. D.

 。2)已知 ,求 、 的值.

  學(xué)生活動(dòng):第(1)題口答,第(2)題在練習(xí)本上完成.

  【教法說(shuō)明】第(1)題可以用解方程組的方法得解,也可以把四組值分別代入原方程組中,利用檢驗(yàn)的方法解,這道題能訓(xùn)練學(xué)生思維的靈活性;第(2)題通過(guò)分析,學(xué)生可得方程組 從而求得 、 的值.此題可以培養(yǎng)學(xué)生分析問(wèn)題,解決問(wèn)題的綜合能力.

  (四)總結(jié)、擴(kuò)展

  1.的思想:

  2.的條件:某一未知數(shù)系數(shù)絕對(duì)值相等.

  3.的步驟:

  八、布置作業(yè) 

 。ㄒ唬┍刈鲱}:P24 1.

  (二)選做題:P25 B組1.

 。ㄈ╊A(yù)習(xí):下節(jié)課內(nèi)容.

  參考答案

 。ㄒ唬1) (2) (3) (4)

 。ǘ1.(1)與(4) (2)與(3)

7.2解二元一次方程組 篇12

  教學(xué)建議

  1.教材分析

  (1)知識(shí)結(jié)構(gòu)

 。2)重點(diǎn)、難點(diǎn)分析

  重點(diǎn):本小節(jié)的重點(diǎn)是使學(xué)生學(xué)會(huì)用加減法解二元一次方程組.這也是一種全新的知識(shí),與在一元一次方程兩邊都加上、減去同一個(gè)數(shù)或同一個(gè)整式,或者都乘以、除以同一個(gè)非零數(shù)的情況是不一樣的,但運(yùn)用這項(xiàng)知識(shí)(這里也表現(xiàn)為一種方法),有時(shí)可以簡(jiǎn)捷地求出二元一次方程組的解,因此學(xué)生同樣會(huì)表現(xiàn)出一種極大的興趣.必須充分利用學(xué)生學(xué)會(huì)這種方法的積極性.加減(消元)法是解二元一次方程組的基本方法之一,因此要讓學(xué)生學(xué)會(huì),并能靈活運(yùn)用.這種方法同樣是解三元一次方程組和某些二元二次方程組的基本方法,在教學(xué)中必須引起足夠重視.

  難點(diǎn):靈活運(yùn)用加減法的技巧,以便將方程變形為比較簡(jiǎn)單和計(jì)算比較簡(jiǎn)便,這也要通過(guò)一定數(shù)量的練習(xí)來(lái)解決.

  2.教法建議

 。1)本節(jié)是通過(guò)一個(gè)引例,介紹了加減法解方程組的基本思想和解題過(guò)程.教學(xué)時(shí),要引導(dǎo)學(xué)生觀察這個(gè)方程組中未知數(shù)系數(shù)的特點(diǎn).通過(guò)觀察讓學(xué)生說(shuō)出,在兩個(gè)方程中y的系數(shù)互為相反數(shù)或在兩個(gè)方程中x的系數(shù)相等,讓學(xué)生自己動(dòng)腦想一想,怎么消元比較簡(jiǎn)便,然后引出加減消元法.

  (2)講完加減法后,課本通過(guò)三個(gè)例題加以鞏固,這三個(gè)例題是由淺入深的,講解時(shí)也要先讓學(xué)生觀察每個(gè)方程組未知數(shù)系數(shù)的特點(diǎn),然后讓學(xué)生說(shuō)出每個(gè)方程組的解法,例題1老師自己板書,剩下的兩個(gè)例題讓學(xué)生上黑板板書,然后老師點(diǎn)評(píng).

 。3)講解完本節(jié)后,教師應(yīng)引導(dǎo)學(xué)生比較代入法與加減法這兩種方法,這兩種方法雖有不同,但實(shí)質(zhì)都是消元,即通過(guò)消去一個(gè)未知數(shù),把“二元”轉(zhuǎn)化為“一元”.也就是說(shuō):

  這時(shí)學(xué)生對(duì)解題方法比較熟悉,但還沒(méi)有上升到理論的高度,這時(shí)教師應(yīng)及時(shí)點(diǎn)撥、滲透化歸轉(zhuǎn)化的思想,并指出這是具有普遍意義的分析問(wèn)題、解決問(wèn)題的思想方法.

  教學(xué)設(shè)計(jì)示例

 。ǖ谝徽n時(shí))

  一、素質(zhì)教育目標(biāo)

 。ㄒ唬┲R(shí)教學(xué)點(diǎn)

  1.使學(xué)生掌握用加減法解二元一次方程組的步驟.

  2.能運(yùn)用加減法解二元一次方程組.

 。ǘ┠芰τ(xùn)練點(diǎn)

  1.培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力.

  2.訓(xùn)練學(xué)生的運(yùn)算技巧.

  (三)德育滲透點(diǎn)

  消元,化未知為已知的轉(zhuǎn)化思想.

  (四)美育滲透點(diǎn)

  滲透化歸的數(shù)學(xué)美.

  二、學(xué)法引導(dǎo)

  1.教學(xué)方法:談話法、討論法.

  2.學(xué)生學(xué)法:觀察各未知量前面系數(shù)的特征,只要將相同未知量前的系數(shù)化為絕對(duì)值相等的值后即可利用加減法進(jìn)行消元,同時(shí)在運(yùn)算中注意歸納解題的技巧和解題的方法.

  三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

  (-)重點(diǎn)

  使學(xué)生學(xué)會(huì)用加減法解二元一次方程組.

 。ǘ╇y點(diǎn)

  靈活運(yùn)用加減消元法的技巧.

 。ㄈ┮牲c(diǎn)

  如何“消元”,把“二元”轉(zhuǎn)化為“一元”.

  (四)解決辦法

  只要將相同未知量前的系數(shù)化為絕對(duì)值相等的值即可利用加減法進(jìn)行消元.

  四、課時(shí)安排

  一課時(shí).

  五、教具學(xué)具準(zhǔn)備

  投影儀、膠片.

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  1.教師通過(guò)復(fù)習(xí)上節(jié)課代入法解二元一次方程組的方法及其解題思想,引入除了消元法還有其他方法嗎?從而導(dǎo)入  新課即加減法解二元一次方程組.

  2.通過(guò)引例進(jìn)一步讓學(xué)生探究是用代入法還是用加減法解方程組更簡(jiǎn)單,讓學(xué)生進(jìn)一步明確用加減法解題的優(yōu)越性.

  3.通過(guò)反復(fù)的訓(xùn)練、歸納、再訓(xùn)練、再歸納,從而積累用加減法解方程組的經(jīng)驗(yàn),進(jìn)而上升到理論.

  七、教學(xué)步驟 

  (-)明確目標(biāo)

  本節(jié)課通過(guò)復(fù)習(xí)代入法從而引入另一種消元的辦法,即加減法解二元一次方程組.

 。ǘ┱w感知

  加減法解二元一次方程組的關(guān)鍵在于將相同字母的系數(shù)化為絕對(duì)值相等的值,即可使用加減法消元.故在教學(xué)中應(yīng)反復(fù)教會(huì)學(xué)生觀察并抓住解題的特征及辦法從而方便解題.

 。ㄈ┙虒W(xué)過(guò)程 

  1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入  

  (1)用代入法解二元一次方程組的基本思想是什么?

 。2)用代入法解下列方程組,并檢驗(yàn)所得結(jié)果是否正確.

  學(xué)生活動(dòng):口答第(1)題,在練習(xí)本上完成第(2)題,一個(gè)同學(xué)說(shuō)出結(jié)果.

  上面的方程組中,我們用代入法消去了一個(gè)未知數(shù),將“二元”轉(zhuǎn)化為“一元”,從而得到了方程組的解.對(duì)于二元一次方程組,是否存在其他方法,也可以消去一個(gè)未知數(shù),達(dá)到化“二元”為“一元”的目的呢?這就是我們這節(jié)課將要學(xué)習(xí)的內(nèi)容.

  【教法說(shuō)明】由練習(xí)導(dǎo)入  新課,既復(fù)習(xí)了舊知識(shí),又引出了新課題,教學(xué)過(guò)程 中還可以進(jìn)行代入法和加減法的對(duì)比,訓(xùn)練學(xué)生根據(jù)題目的特點(diǎn)選取適當(dāng)?shù)姆椒ń忸}.

  2.探索新知,講授新課

  第(2)題的兩個(gè)方程中,未知數(shù) 的系數(shù)有什么特點(diǎn)?(互為相反數(shù))根據(jù)等式的性質(zhì),如果把這兩個(gè)方程的左邊與左邊相加,右邊與右邊相加,就可以消掉 ,得到一個(gè)一元一次方程,進(jìn)而求得二元一次方程組的解.

  解:①+②,得

  把 代入①,得

  ∴

  ∴

  學(xué)生活動(dòng):比較用這種方法得到的 、 值是否與用代入法得到的相同.(相同)

  上面方程組的兩個(gè)方程中,因?yàn)?的系數(shù)互為相反數(shù),所以我們把兩個(gè)方程相加,就消去了 .觀察一下, 的系數(shù)有何特點(diǎn)?(相等)方程①和方程②經(jīng)過(guò)怎樣的變化可以消去 ?(相減)

  學(xué)生活動(dòng):觀察、思考,嘗試用①-②消元,解方程組,比較結(jié)果是否與用①+②得到的結(jié)果相同.(相同)

  我們將原方程組的兩個(gè)方程相加或相減,把“二元”化成了“一元”,從而得到了方程組的解.像這種解二元一次方程組的方法叫加減消元法,簡(jiǎn)稱“加減法”.

  提問(wèn):①比較上面解二元一次方程組的方法,是用代入法簡(jiǎn)單,還是用加減法簡(jiǎn)單?(加減法)

 、谠谑裁礂l件下可以用加減法進(jìn)行消元?(某一個(gè)未知數(shù)的系數(shù)相等或互為相反數(shù))

 、凼裁礂l件下用加法、什么條件下用減法?(某個(gè)未知數(shù)的系數(shù)互為相反數(shù)時(shí)用加法,系數(shù)相等時(shí)用減法)

  【教法說(shuō)明】這幾個(gè)問(wèn)題,可使學(xué)生明確使用加減法的條件,體會(huì)在某些條件下使用加減法的優(yōu)越性.

  例1  解方程組

  哪個(gè)未知數(shù)的系數(shù)有特點(diǎn)?( 的系數(shù)相等)把這兩個(gè)方程怎樣變化可以消去 ?(相減)

  學(xué)生活動(dòng):回答問(wèn)題后,獨(dú)立完成例1,一個(gè)學(xué)生板演.

  解:①-②,得

  ∴

  把 代入②,得

  ∴

  ∴

  ∴

 。1)檢驗(yàn)一下,所得結(jié)果是否正確?

 。2)用②-①可以消掉 嗎?(可以)是用①-②,還是用②-①計(jì)算比較簡(jiǎn)單?(①-②簡(jiǎn)單)

 。3)把 代入①, 的值是多少?( ),是代入①計(jì)算簡(jiǎn)單還是代入②計(jì)算簡(jiǎn)單?(代入系數(shù)較簡(jiǎn)單的方程)

  練習(xí):P23  l.(l)(2)(3),分組練習(xí),并把學(xué)生的解題過(guò)程在投影儀上顯示.

  小結(jié):用加減法解二元一次方程組的條件是某個(gè)未知數(shù)的系數(shù)絕對(duì)值相等.

  例2  解方程組

 。1)上面的方程組是否符合用加減法消元的條件?(不符合)

 。2)如何轉(zhuǎn)化可使某個(gè)未知數(shù)系數(shù)的絕對(duì)值相等?(①×2或②×3)

  歸納:如果兩個(gè)方程中,未知數(shù)系數(shù)的絕對(duì)值都不相等,可以在方程兩邊部乘以同一個(gè)適當(dāng)?shù)臄?shù),使兩個(gè)方程中有一個(gè)未知數(shù)的系數(shù)絕對(duì)值相等,然后再加減消元.

  學(xué)生活動(dòng):獨(dú)立解題,并把一名學(xué)生解題過(guò)程在投影儀上顯示.

  學(xué)生活動(dòng):總結(jié)用加減法解二元一次方程組的步驟.

 、僮冃,使某個(gè)未知數(shù)的系數(shù)絕對(duì)值相等.

 、诩訙p消元.

 、劢庖辉淮畏匠.

 、艽氲昧硪粋(gè)未知數(shù)的值,從而得方程組的解.

  3.嘗試反饋,鞏固知識(shí)

  練習(xí):P23  1.(4)(5).

  【教法說(shuō)明】通過(guò)練習(xí),使學(xué)生熟練地用加減法解二元一次方程組并能在練習(xí)中摸索運(yùn)算技巧,培養(yǎng)能力.

  4.變式訓(xùn)練,培養(yǎng)能力

  (1)選擇:二元一次方程組 的解是( )

  A. B. C. D.

 。2)已知 ,求 、 的值.

  學(xué)生活動(dòng):第(1)題口答,第(2)題在練習(xí)本上完成.

  【教法說(shuō)明】第(1)題可以用解方程組的方法得解,也可以把四組值分別代入原方程組中,利用檢驗(yàn)的方法解,這道題能訓(xùn)練學(xué)生思維的靈活性;第(2)題通過(guò)分析,學(xué)生可得方程組 從而求得 、 的值.此題可以培養(yǎng)學(xué)生分析問(wèn)題,解決問(wèn)題的綜合能力.

  (四)總結(jié)、擴(kuò)展

  1.用加減法解二元一次方程組的思想: 

  2.用加減法解二元一次方程組的條件:某一未知數(shù)系數(shù)絕對(duì)值相等.

  3.用加減法解二元一次方程組的步驟:

  八、布置作業(yè) 

  (一)必做題:P24 1.

 。ǘ┻x做題:P25 B組1.

 。ㄈ╊A(yù)習(xí):下節(jié)課內(nèi)容.

  參考答案

 。ㄒ唬1) (2) (3) (4)

  (二)1.(1)與(4) (2)與(3)

7.2解二元一次方程組 篇13

  教學(xué)建議

  1.教材分析

 。1)知識(shí)結(jié)構(gòu)

 。2)重點(diǎn)、難點(diǎn)分析

  重點(diǎn):本小節(jié)的重點(diǎn)是使學(xué)生學(xué)會(huì).這也是一種全新的知識(shí),與在一元一次方程兩邊都加上、減去同一個(gè)數(shù)或同一個(gè)整式,或者都乘以、除以同一個(gè)非零數(shù)的情況是不一樣的,但運(yùn)用這項(xiàng)知識(shí)(這里也表現(xiàn)為一種方法),有時(shí)可以簡(jiǎn)捷地求出二元一次方程組的解,因此學(xué)生同樣會(huì)表現(xiàn)出一種極大的興趣.必須充分利用學(xué)生學(xué)會(huì)這種方法的積極性.加減(消元)法是解二元一次方程組的基本方法之一,因此要讓學(xué)生學(xué)會(huì),并能靈活運(yùn)用.這種方法同樣是解三元一次方程組和某些二元二次方程組的基本方法,在教學(xué)中必須引起足夠重視.

  難點(diǎn):靈活運(yùn)用加減法的技巧,以便將方程變形為比較簡(jiǎn)單和計(jì)算比較簡(jiǎn)便,這也要通過(guò)一定數(shù)量的練習(xí)來(lái)解決.

  2.教法建議

 。1)本節(jié)是通過(guò)一個(gè)引例,介紹了加減法解方程組的基本思想和解題過(guò)程.教學(xué)時(shí),要引導(dǎo)學(xué)生觀察這個(gè)方程組中未知數(shù)系數(shù)的特點(diǎn).通過(guò)觀察讓學(xué)生說(shuō)出,在兩個(gè)方程中y的系數(shù)互為相反數(shù)或在兩個(gè)方程中x的系數(shù)相等,讓學(xué)生自己動(dòng)腦想一想,怎么消元比較簡(jiǎn)便,然后引出加減消元法.

 。2)講完加減法后,課本通過(guò)三個(gè)例題加以鞏固,這三個(gè)例題是由淺入深的,講解時(shí)也要先讓學(xué)生觀察每個(gè)方程組未知數(shù)系數(shù)的特點(diǎn),然后讓學(xué)生說(shuō)出每個(gè)方程組的解法,例題1老師自己板書,剩下的兩個(gè)例題讓學(xué)生上黑板板書,然后老師點(diǎn)評(píng).

 。3)講解完本節(jié)后,教師應(yīng)引導(dǎo)學(xué)生比較代入法與加減法這兩種方法,這兩種方法雖有不同,但實(shí)質(zhì)都是消元,即通過(guò)消去一個(gè)未知數(shù),把“二元”轉(zhuǎn)化為“一元”.也就是說(shuō):

  這時(shí)學(xué)生對(duì)解題方法比較熟悉,但還沒(méi)有上升到理論的高度,這時(shí)教師應(yīng)及時(shí)點(diǎn)撥、滲透化歸轉(zhuǎn)化的思想,并指出這是具有普遍意義的分析問(wèn)題、解決問(wèn)題的思想方法.

  教學(xué)設(shè)計(jì)示例

  (第一課時(shí))

  一、素質(zhì)教育目標(biāo)

 。ㄒ唬┲R(shí)教學(xué)點(diǎn)

  1.使學(xué)生掌握的步驟.

  2.能運(yùn).

 。ǘ┠芰τ(xùn)練點(diǎn)

  1.培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力.

  2.訓(xùn)練學(xué)生的運(yùn)算技巧.

 。ㄈ┑掠凉B透點(diǎn)

  消元,化未知為已知的轉(zhuǎn)化思想.

 。ㄋ模┟烙凉B透點(diǎn)

  滲透化歸的數(shù)學(xué)美.

  二、學(xué)法引導(dǎo)

  1.教學(xué)方法:談話法、討論法.

  2.學(xué)生學(xué)法:觀察各未知量前面系數(shù)的特征,只要將相同未知量前的系數(shù)化為絕對(duì)值相等的值后即可利用加減法進(jìn)行消元,同時(shí)在運(yùn)算中注意歸納解題的技巧和解題的方法.

  三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

 。ǎ┲攸c(diǎn)

  使學(xué)生學(xué)會(huì).

 。ǘ╇y點(diǎn)

  靈活運(yùn)用加減消元法的技巧.

  (三)疑點(diǎn)

  如何“消元”,把“二元”轉(zhuǎn)化為“一元”.

  (四)解決辦法

  只要將相同未知量前的系數(shù)化為絕對(duì)值相等的值即可利用加減法進(jìn)行消元.

  四、課時(shí)安排

  一課時(shí).

  五、教具學(xué)具準(zhǔn)備

  投影儀、膠片.

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  1.教師通過(guò)復(fù)習(xí)上節(jié)課代入法解二元一次方程組的方法及其解題思想,引入除了消元法還有其他方法嗎?從而導(dǎo)入  新課即加減法解二元一次方程組.

  2.通過(guò)引例進(jìn)一步讓學(xué)生探究是用代入法還是用加減法解方程組更簡(jiǎn)單,讓學(xué)生進(jìn)一步明確用加減法解題的優(yōu)越性.

  3.通過(guò)反復(fù)的訓(xùn)練、歸納、再訓(xùn)練、再歸納,從而積累用加減法解方程組的經(jīng)驗(yàn),進(jìn)而上升到理論.

  七、教學(xué)步驟 

 。ǎ┟鞔_目標(biāo)

  本節(jié)課通過(guò)復(fù)習(xí)代入法從而引入另一種消元的辦法,即加減法解二元一次方程組.

  (二)整體感知

  加減法解二元一次方程組的關(guān)鍵在于將相同字母的系數(shù)化為絕對(duì)值相等的值,即可使用加減法消元.故在教學(xué)中應(yīng)反復(fù)教會(huì)學(xué)生觀察并抓住解題的特征及辦法從而方便解題.

 。ㄈ┙虒W(xué)過(guò)程 

  1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入  

 。1)用代入法解二元一次方程組的基本思想是什么?

 。2)用代入法解下列方程組,并檢驗(yàn)所得結(jié)果是否正確.

  學(xué)生活動(dòng):口答第(1)題,在練習(xí)本上完成第(2)題,一個(gè)同學(xué)說(shuō)出結(jié)果.

  上面的方程組中,我們用代入法消去了一個(gè)未知數(shù),將“二元”轉(zhuǎn)化為“一元”,從而得到了方程組的解.對(duì)于二元一次方程組,是否存在其他方法,也可以消去一個(gè)未知數(shù),達(dá)到化“二元”為“一元”的目的呢?這就是我們這節(jié)課將要學(xué)習(xí)的內(nèi)容.

  【教法說(shuō)明】由練習(xí)導(dǎo)入  新課,既復(fù)習(xí)了舊知識(shí),又引出了新課題,教學(xué)過(guò)程 中還可以進(jìn)行代入法和加減法的對(duì)比,訓(xùn)練學(xué)生根據(jù)題目的特點(diǎn)選取適當(dāng)?shù)姆椒ń忸}.

  2.探索新知,講授新課

  第(2)題的兩個(gè)方程中,未知數(shù) 的系數(shù)有什么特點(diǎn)?(互為相反數(shù))根據(jù)等式的性質(zhì),如果把這兩個(gè)方程的左邊與左邊相加,右邊與右邊相加,就可以消掉 ,得到一個(gè)一元一次方程,進(jìn)而求得二元一次方程組的解.

  解:①+②,得

  把 代入①,得

  ∴

  ∴

  學(xué)生活動(dòng):比較用這種方法得到的 、 值是否與用代入法得到的相同.(相同)

  上面方程組的兩個(gè)方程中,因?yàn)?的系數(shù)互為相反數(shù),所以我們把兩個(gè)方程相加,就消去了 .觀察一下, 的系數(shù)有何特點(diǎn)?(相等)方程①和方程②經(jīng)過(guò)怎樣的變化可以消去 ?(相減)

  學(xué)生活動(dòng):觀察、思考,嘗試用①-②消元,解方程組,比較結(jié)果是否與用①+②得到的結(jié)果相同.(相同)

  我們將原方程組的兩個(gè)方程相加或相減,把“二元”化成了“一元”,從而得到了方程組的解.像這種解二元一次方程組的方法叫加減消元法,簡(jiǎn)稱“加減法”.

  提問(wèn):①比較上面解二元一次方程組的方法,是用代入法簡(jiǎn)單,還是用加減法簡(jiǎn)單?(加減法)

 、谠谑裁礂l件下可以用加減法進(jìn)行消元?(某一個(gè)未知數(shù)的系數(shù)相等或互為相反數(shù))

  ③什么條件下用加法、什么條件下用減法?(某個(gè)未知數(shù)的系數(shù)互為相反數(shù)時(shí)用加法,系數(shù)相等時(shí)用減法)

  【教法說(shuō)明】這幾個(gè)問(wèn)題,可使學(xué)生明確使用加減法的條件,體會(huì)在某些條件下使用加減法的優(yōu)越性.

  例1  解方程組

  哪個(gè)未知數(shù)的系數(shù)有特點(diǎn)?( 的系數(shù)相等)把這兩個(gè)方程怎樣變化可以消去 ?(相減)

  學(xué)生活動(dòng):回答問(wèn)題后,獨(dú)立完成例1,一個(gè)學(xué)生板演.

  解:①-②,得

  ∴

  把 代入②,得

  ∴

  ∴

  ∴

 。1)檢驗(yàn)一下,所得結(jié)果是否正確?

 。2)用②-①可以消掉 嗎?(可以)是用①-②,還是用②-①計(jì)算比較簡(jiǎn)單?(①-②簡(jiǎn)單)

  (3)把 代入①, 的值是多少?( ),是代入①計(jì)算簡(jiǎn)單還是代入②計(jì)算簡(jiǎn)單?(代入系數(shù)較簡(jiǎn)單的方程)

  練習(xí):P23  l.(l)(2)(3),分組練習(xí),并把學(xué)生的解題過(guò)程在投影儀上顯示.

  小結(jié):的條件是某個(gè)未知數(shù)的系數(shù)絕對(duì)值相等.

  例2  解方程組

 。1)上面的方程組是否符合用加減法消元的條件?(不符合)

 。2)如何轉(zhuǎn)化可使某個(gè)未知數(shù)系數(shù)的絕對(duì)值相等?(①×2或②×3)

  歸納:如果兩個(gè)方程中,未知數(shù)系數(shù)的絕對(duì)值都不相等,可以在方程兩邊部乘以同一個(gè)適當(dāng)?shù)臄?shù),使兩個(gè)方程中有一個(gè)未知數(shù)的系數(shù)絕對(duì)值相等,然后再加減消元.

  學(xué)生活動(dòng):獨(dú)立解題,并把一名學(xué)生解題過(guò)程在投影儀上顯示.

  學(xué)生活動(dòng):總結(jié)的步驟.

 、僮冃,使某個(gè)未知數(shù)的系數(shù)絕對(duì)值相等.

  ②加減消元.

 、劢庖辉淮畏匠.

 、艽氲昧硪粋(gè)未知數(shù)的值,從而得方程組的解.

  3.嘗試反饋,鞏固知識(shí)

  練習(xí):P23  1.(4)(5).

  【教法說(shuō)明】通過(guò)練習(xí),使學(xué)生熟練地并能在練習(xí)中摸索運(yùn)算技巧,培養(yǎng)能力.

  4.變式訓(xùn)練,培養(yǎng)能力

 。1)選擇:二元一次方程組 的解是( )

  A. B. C. D.

 。2)已知 ,求 、 的值.

  學(xué)生活動(dòng):第(1)題口答,第(2)題在練習(xí)本上完成.

  【教法說(shuō)明】第(1)題可以用解方程組的方法得解,也可以把四組值分別代入原方程組中,利用檢驗(yàn)的方法解,這道題能訓(xùn)練學(xué)生思維的靈活性;第(2)題通過(guò)分析,學(xué)生可得方程組 從而求得 、 的值.此題可以培養(yǎng)學(xué)生分析問(wèn)題,解決問(wèn)題的綜合能力.

 。ㄋ模┛偨Y(jié)、擴(kuò)展

  1.的思想:

  2.的條件:某一未知數(shù)系數(shù)絕對(duì)值相等.

  3.的步驟:

  八、布置作業(yè) 

  (一)必做題:P24 1.

 。ǘ┻x做題:P25 B組1.

 。ㄈ╊A(yù)習(xí):下節(jié)課內(nèi)容.

  參考答案

 。ㄒ唬1) (2) (3) (4)

 。ǘ1.(1)與(4) (2)與(3)

7.2解二元一次方程組(精選13篇) 相關(guān)內(nèi)容:
  • 消元法解二元一次方程組說(shuō)課稿(精選9篇)

    一、 關(guān)于教材地位和作用的分析《 二元一次方程組的解法(5)》是在前面學(xué)習(xí)了列一元一次方程解應(yīng)用題及二元一次方程組的解法(代入消元法和加減消元法)基礎(chǔ)上的一節(jié)綜合實(shí)際應(yīng)用課。...

  • 用加減法解二元一次方程組(精選5篇)

    教學(xué)建議1.教材分析(1)知識(shí)結(jié)構(gòu)(2)重點(diǎn)、難點(diǎn)分析重點(diǎn):本小節(jié)的重點(diǎn)是使學(xué)生學(xué)會(huì).這也是一種全新的知識(shí),與在一元一次方程兩邊都加上、減去同一個(gè)數(shù)或同一個(gè)整式,或者都乘以、除以同一個(gè)非零數(shù)的情況是不一樣的,但運(yùn)用這項(xiàng)知識(shí)(這...

  • 用代入法解二元一次方程組(精選5篇)

    教學(xué)建議一、重點(diǎn)、難點(diǎn)分析本節(jié)的教學(xué)重點(diǎn)是使學(xué)生學(xué)會(huì)用代入法.教學(xué)難點(diǎn)在于靈活運(yùn)用代入法,這要通過(guò)一定數(shù)量的練習(xí)來(lái)解決;另一個(gè)難點(diǎn)在于用代入法求出一個(gè)未知數(shù)的值后,不知道應(yīng)把它代入哪一個(gè)方程求另一個(gè)未知數(shù)的值比較簡(jiǎn)便.解二...

  • 數(shù)學(xué)教案-用加減法解二元一次方程組

    教學(xué)建議 1.教材分析 (1)知識(shí)結(jié)構(gòu) (2)重點(diǎn)、難點(diǎn)分析 重點(diǎn):本小節(jié)的重點(diǎn)是使學(xué)生學(xué)會(huì)用加減法解二元一次方程組.這也是一種全新的知識(shí),與在一元一次方程兩邊都加上、減去同一個(gè)數(shù)或同一個(gè)整式,或者都乘以、除以同一個(gè)非零數(shù)的情況是...

  • 用代入法解二元一次方程組

    教學(xué)建議 一、重點(diǎn)、難點(diǎn)分析 本節(jié)的教學(xué)重點(diǎn)是使學(xué)生學(xué)會(huì)用代入法.教學(xué)難點(diǎn)在于靈活運(yùn)用代入法,這要通過(guò)一定數(shù)量的練習(xí)來(lái)解決;另一個(gè)難點(diǎn)在于用代入法求出一個(gè)未知數(shù)的值后,不知道應(yīng)把它代入哪一個(gè)方程求另一個(gè)未知數(shù)的值比較簡(jiǎn)便. 解...

  • 用加減法解二元一次方程組

    教學(xué)建議 1.教材分析 (1)知識(shí)結(jié)構(gòu) (2)重點(diǎn)、難點(diǎn)分析 重點(diǎn):本小節(jié)的重點(diǎn)是使學(xué)生學(xué)會(huì).這也是一種全新的知識(shí),與在一元一次方程兩邊都加上、減去同一個(gè)數(shù)或同一個(gè)整式,或者都乘以、除以同一個(gè)非零數(shù)的情況是不一樣的,但運(yùn)用這項(xiàng)知識(shí)...

  • 數(shù)學(xué)教案-用代入法解二元一次方程組

    教學(xué)建議 一、重點(diǎn)、難點(diǎn)分析 本節(jié)的教學(xué)重點(diǎn)是使學(xué)生學(xué)會(huì)用代入法.教學(xué)難點(diǎn)在于靈活運(yùn)用代入法,這要通過(guò)一定數(shù)量的練習(xí)來(lái)解決;另一個(gè)難點(diǎn)在于用代入法求出一個(gè)未知數(shù)的值后,不知道應(yīng)把它代入哪一個(gè)方程求另一個(gè)未知數(shù)的值比較簡(jiǎn)便. 解...

  • 用加減法解二元一次方程組

    教學(xué)建議 1.教材分析 (1)知識(shí)結(jié)構(gòu) (2)重點(diǎn)、難點(diǎn)分析 重點(diǎn):本小節(jié)的重點(diǎn)是使學(xué)生學(xué)會(huì).這也是一種全新的知識(shí),與在一元一次方程兩邊都加上、減去同一個(gè)數(shù)或同一個(gè)整式,或者都乘以、除以同一個(gè)非零數(shù)的情況是不一樣的,但運(yùn)用這項(xiàng)知識(shí)...

  • 用代入法解二元一次方程組

    教學(xué)建議 一、重點(diǎn)、難點(diǎn)分析 本節(jié)的教學(xué)重點(diǎn)是使學(xué)生學(xué)會(huì)用代入法.教學(xué)難點(diǎn)在于靈活運(yùn)用代入法,這要通過(guò)一定數(shù)量的練習(xí)來(lái)解決;另一個(gè)難點(diǎn)在于用代入法求出一個(gè)未知數(shù)的值后,不知道應(yīng)把它代入哪一個(gè)方程求另一個(gè)未知數(shù)的值比較簡(jiǎn)便. 解...

  • 用加減法解二元一次方程組

    教學(xué)建議 1.教材分析 (1)知識(shí)結(jié)構(gòu) (2)重點(diǎn)、難點(diǎn)分析 重點(diǎn):本小節(jié)的重點(diǎn)是使學(xué)生學(xué)會(huì).這也是一種全新的知識(shí),與在一元一次方程兩邊都加上、減去同一個(gè)數(shù)或同一個(gè)整式,或者都乘以、除以同一個(gè)非零數(shù)的情況是不一樣的,但運(yùn)用這項(xiàng)知識(shí)...

  • 用代入法解二元一次方程組

    教學(xué)建議 一、重點(diǎn)、難點(diǎn)分析 本節(jié)的教學(xué)重點(diǎn)是使學(xué)生學(xué)會(huì)用代入法.教學(xué)難點(diǎn)在于靈活運(yùn)用代入法,這要通過(guò)一定數(shù)量的練習(xí)來(lái)解決;另一個(gè)難點(diǎn)在于用代入法求出一個(gè)未知數(shù)的值后,不知道應(yīng)把它代入哪一個(gè)方程求另一個(gè)未知數(shù)的值比較簡(jiǎn)便. 解...

  • 用加減法解二元一次方程組

    教學(xué)建議 1.教材分析 (1)知識(shí)結(jié)構(gòu) (2)重點(diǎn)、難點(diǎn)分析 重點(diǎn):本小節(jié)的重點(diǎn)是使學(xué)生學(xué)會(huì).這也是一種全新的知識(shí),與在一元一次方程兩邊都加上、減去同一個(gè)數(shù)或同一個(gè)整式,或者都乘以、除以同一個(gè)非零數(shù)的情況是不一樣的,但運(yùn)用這項(xiàng)知識(shí)...

  • 用代入法解二元一次方程組

    教學(xué)建議 一、重點(diǎn)、難點(diǎn)分析 本節(jié)的教學(xué)重點(diǎn)是使學(xué)生學(xué)會(huì)用代入法.教學(xué)難點(diǎn)在于靈活運(yùn)用代入法,這要通過(guò)一定數(shù)量的練習(xí)來(lái)解決;另一個(gè)難點(diǎn)在于用代入法求出一個(gè)未知數(shù)的值后,不知道應(yīng)把它代入哪一個(gè)方程求另一個(gè)未知數(shù)的值比較簡(jiǎn)便. 解...

  • 二元一次方程組的說(shuō)課稿范文(精選2篇)

    一、說(shuō)教材本節(jié)課講的是七年級(jí)《數(shù)學(xué)》下冊(cè)第八章第三節(jié)的第一課時(shí)——用二元一次方程組解決實(shí)際問(wèn)題,在學(xué)生已經(jīng)熟練掌握二元一次方程組的解法的基礎(chǔ)上,通過(guò)對(duì)實(shí)際問(wèn)題審,設(shè),列,解,答;經(jīng)歷建立二元一次方程組這種數(shù)學(xué)模型解決實(shí)際問(wèn)...

  • 初中數(shù)學(xué)《二元一次方程組》教案范文(通用2篇)

    澄邁中學(xué)曾文嬌教學(xué)目標(biāo):1.認(rèn)識(shí)二元一次方程和二元一次方程組.2.了解二元一次方程和二元一次方程組的解,會(huì)求二元一次方程的正整數(shù)解.教學(xué)重點(diǎn):理解二元一次方程組的解的意義.教學(xué)難點(diǎn):求二元一次方程的正整數(shù)解.教學(xué)過(guò)程:籃球聯(lián)賽中...

  • 教案下載