最近中文字幕完整版高清,宅男宅女精品国产av天堂,亚洲欧美日韩综合一区二区,最新色国产精品精品视频,中文字幕日韩欧美就去鲁

首頁(yè) > 教案下載 > 教案大全 > 二元一次方程教案(通用15篇)

二元一次方程教案

發(fā)布時(shí)間:2023-07-19

二元一次方程教案(通用15篇)

二元一次方程教案 篇1

  教學(xué)目標(biāo)

  1.使學(xué)生會(huì)用加減法解二元一次方程組。

  2.學(xué)生通過(guò)解決問(wèn)題,了解代入法與加減法的共性及個(gè)性。

  重點(diǎn):探尋用加減法解二元一次的方程組的進(jìn)程。

  難點(diǎn):消元轉(zhuǎn)化的過(guò)程

  教學(xué)方法:講練結(jié)合、探索交流課型新授課教具投影儀

  教師活動(dòng):學(xué)生活動(dòng)

  情景設(shè)置:

  小明買了兩份水果,一份是3kg蘋果、2kg香蕉,共用去13.2元;另一份是2kg蘋果、5kg香蕉,共用去19.8元。設(shè)蘋果x元/kg,香蕉y元/kg.列出方程。

  新課講解:

  列出方程組

  1.解方程組

  分析:關(guān)鍵的出方程〈1〉中的2y與方程〈2〉中的-2y互為相反數(shù)。想象出如果相加兩個(gè)方程,會(huì)是什么結(jié)果?

  板演:

  解:〈1〉+〈2〉得:

  4x=6

  x=

  把x= 代入〈1〉得

  +2y=1

  解出這個(gè)方程,得

  y=

  所以原方程組的解是

  2.解方程組

  通過(guò)議一議,讓學(xué)生都有感覺消去含x或y的項(xiàng)都可以,但哪個(gè)更簡(jiǎn)便?

  解:〈1〉 3,得

  15x-6y=12 〈3〉

  〈2〉 2,得

  4x-6y=-10 〈4〉

  〈3〉-〈4〉,得

  11x=22

  x=2

  將x=2代入〈1〉,得

  5 2-2y=4

  y=3

  所以原方程組的解是

  加減消元法:把方程組的兩個(gè)防城(或先作適當(dāng)變形)相加或相減,消去其中一個(gè)未知數(shù),把解二元一次方程組轉(zhuǎn)化為解一元一次方程。

  練一練:

  解方程組

  小結(jié):

  加減消元法關(guān)鍵是如何消元,化二元為一元。

  先觀察后確定消元。

  教學(xué)素材:

  A組題:解下列方程組:

  (1)

  (2)

  (3)

  (4)

  (5)

  B組題:運(yùn)用轉(zhuǎn)化的思想方法,你能解下面的三元一次方程組嗎?

  (1)

  (2)

  學(xué)生讀題,議一議

  學(xué)生想一想,如感到困難則看道簡(jiǎn)單題。

  由學(xué)生觀察,如何求出x,y的值,學(xué)生再討論。

  試一試。學(xué)生口述。

  老師板演

  得到一元一次方程

  學(xué)生再觀察,議一議

  ①消去哪個(gè)未知數(shù)

 、谠鯓酉?

  P112 1(1)(2)(3)(4)

  作業(yè)習(xí)題11.3 P112 1(3)(4) 3 , 4

二元一次方程教案 篇2

  教學(xué)目標(biāo)

  1.會(huì)列出二元一次方程組解簡(jiǎn)單應(yīng)用題,并能檢驗(yàn)結(jié)果的合理性。

  2.知道二元一次方程組是反映現(xiàn)實(shí)世界量之間相等關(guān)系的一種有效的數(shù)學(xué)模型20xx年-20xx學(xué)年七年級(jí)數(shù)學(xué)下冊(cè)全冊(cè)教案(人教版)20xx年-20xx學(xué)年七年級(jí)數(shù)學(xué)下冊(cè)全冊(cè)教案(人教版)。

  3.引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),滲透將來(lái)未知轉(zhuǎn)達(dá)化為已知的辯證思想。

  教學(xué)重點(diǎn)

  1.列二元一次方程組解簡(jiǎn)單問(wèn)題。

  2.徹底理解題意

  教學(xué)難點(diǎn)

  找等量關(guān)系列二元一次方程組。

  教學(xué)過(guò)程

  一、情境引入。

  小剛與小玲一起在水果店買水果,小剛買了3千克蘋果,2千克梨,共花了18.8元。小玲買了2千克蘋果,3千克梨,共花了18.2元;丶衣飞希麄冇錾狭撕门笥研≤,小軍問(wèn)蘋果、梨各多少錢1千克?他們不講,只講各自買的幾千克水果和總共的錢,要小軍猜。聰明的同學(xué)們,小軍能猜出來(lái)嗎?

  二、建立模型。

  1.怎樣設(shè)未知數(shù)?

  2.找本題等量關(guān)系?從哪句話中找到的?

  3.列方程組。

  4.解方程組。

  5.檢驗(yàn)寫答案。

  思考:怎樣用一元一次方程求解?

  比較用一元一次方程求解,用二元一次方程組求解誰(shuí)更容易?

  三、練習(xí)。

  1.根據(jù)問(wèn)題建立二元一次方程組。

 。1)甲、乙兩數(shù)和是40差是6,求這兩數(shù)。

 。2)80班共有64名學(xué)生,其中男生比女生多8人,求這個(gè)班男生人數(shù),女生人數(shù)。

  (3)已知關(guān)于求x、y的方程,

  是二元一次方程。求a、b的值。

  2.P38練習(xí)第1題。

  四、小結(jié)。

  小組討論:列二元一次方程組解應(yīng)用題有哪些基本步驟?

  五、作業(yè)。

  P42。習(xí)題2.3A組第1題。

  后記:

  2.3二元一次方程組的應(yīng)用(2)

二元一次方程教案 篇3

  教學(xué)目的

  1.使學(xué)生了解二元一次方程,二元一次方程組的概念。

  2.使學(xué)生了解二元一次方程;二元一次方程組的解的含義,會(huì)檢驗(yàn)一對(duì)數(shù)是不是它們的解。

  3.通過(guò)引例的教學(xué),使學(xué)生進(jìn)一步使用代數(shù)中的方程去反映現(xiàn)實(shí)世界中的等量關(guān)系,體會(huì)代數(shù)方法的優(yōu)越性。

  重點(diǎn):了解二元一次方程、二元一次方程組以及二元一次方程組的解的含

  難點(diǎn);了解二元一次方程組的解的含義。

  導(dǎo)學(xué)提綱:

  1.什么叫一元一次方程?什么叫一元一次方程的解?怎樣檢驗(yàn)一個(gè)數(shù)是否是這個(gè)方程的解?

  2.閱讀教材問(wèn)題1思考下列問(wèn)題

 、.能否用我們已經(jīng)學(xué)過(guò)的知識(shí)來(lái)解決這個(gè)問(wèn)題?

  用算術(shù)法解答

  用一元一次方程解答

  解后反思:既然是求兩個(gè)未知量,那么能不能同時(shí)設(shè)兩個(gè)未知數(shù)?

 、.此問(wèn)題中有兩個(gè)問(wèn)題如果分別設(shè)為x、y,怎樣列式呢?(完成教材中的表格)

  ⑶.對(duì)于方程x十y=73x+y=17請(qǐng)思考下列問(wèn)題

 、偎鼈兪且辉淮畏匠虇?

 、谶@兩個(gè)方程有沒有共同特點(diǎn)/若有,有河共同特點(diǎn)?

  ③類比一元一次方程的概念,總結(jié)二元一次方程的概念

  3.從教材中找出二元一次方程和二元一次方程組的概念(結(jié)合一元一次方程,二元一次方程對(duì)“元”和“次”作進(jìn)一步的解釋)

  注意二元一次方程組的書寫方式,方程組中的各方程中,同一個(gè)字母必須代表同一個(gè)量

  4.與是否滿足方程①與是否滿足方程②類比一元一次方程的解總結(jié)二元一次方程組的解的概念

  注意:(1)未知數(shù)的值必須同時(shí)滿足兩個(gè)方程時(shí),才是方程組的解.若取,時(shí),它們能滿足方程①,但不滿足方程②,所以它們不是方程組的解.

  (2)二元一次方程組的解是一對(duì)數(shù),而不是一個(gè)數(shù),所以必須把與合起來(lái),才是方程組的.解.

  5.思考討論在方程組①②③④

 、茛拗校瑢儆诙淮畏匠探M的有

  達(dá)標(biāo)檢測(cè):

  1.根據(jù)下列語(yǔ)句,分別設(shè)適當(dāng)?shù)奈粗獢?shù),列出二元一次方程或方程組:

  (1)甲數(shù)的比乙數(shù)的2倍少7:_____________________________;

  (2)摩托車的時(shí)速是貨車的倍,它們的速度之和是200千米/時(shí):________;

  (3)某種時(shí)裝的價(jià)格是某種皮裝的價(jià)格的1.4倍,5件皮裝比3件時(shí)裝貴700元:______________________________.

  2.下列方程是二元一次方程的是

  A、2x+x=1B、x-3yC、x+x-3=0D、x+y=2

  3.下列不是二元一次方程組的是

  x+3y=5m+3m=152x+3x=0m+n=5

  A、B、C、D、

  2x-3x=3+=3-5y=02m+n=6

  x=2

  4.在方程3x-ky=0中,如果是它的一個(gè)解,則k的值為_______.

  y=-3

  5.若mxy+9x+3y=-9是關(guān)于x、y的二元一次方程,則m=_______n=_______.

二元一次方程教案 篇4

  一、教材分析

  1、教材的地位和作用

  函數(shù)、方程和不等式都是人們刻畫現(xiàn)實(shí)世界的重要數(shù)學(xué)模型。用函數(shù)的觀點(diǎn)看方程(組)與不等式,使學(xué)生不僅能加深對(duì)方程(組)、不等式的理解,提高認(rèn)識(shí)問(wèn)題的水平,而且能從函數(shù)的角度將三者統(tǒng)一起來(lái),感受數(shù)學(xué)的統(tǒng)一美。本節(jié)課是學(xué)生學(xué)習(xí)完一次函數(shù)、一元一次方程及一元一次不等式的聯(lián)系后對(duì)一次函數(shù)和二元一次方程(組)關(guān)系的探究,學(xué)生在探索過(guò)程中體驗(yàn)數(shù)形結(jié)合的思想方法和數(shù)學(xué)模型的應(yīng)用價(jià)值,這對(duì)今后的學(xué)習(xí)有著十分重要的意義。

  2、教學(xué)重難點(diǎn)

  重點(diǎn):一次函數(shù)與二元一次方程(組)關(guān)系的探索。

  難點(diǎn):綜合運(yùn)用方程(組)、不等式和函數(shù)的知識(shí)解決實(shí)際問(wèn)題。

  3、教學(xué)目標(biāo)

  知識(shí)技能:理解一次函數(shù)與二元一次方程(組)的關(guān)系,會(huì)用圖象法解二元一次方程組。

  數(shù)學(xué)思考:經(jīng)歷一次函數(shù)與二元一次方程(組)關(guān)系的探索及相關(guān)實(shí)際問(wèn)題的解決過(guò)程,學(xué)會(huì)用函數(shù)的觀點(diǎn)去認(rèn)識(shí)問(wèn)題。

  解決問(wèn)題:能綜合應(yīng)用一次函數(shù)、一元一次方程、一元一次不等式、二元一次方程(組)解決相關(guān)實(shí)際問(wèn)題。

  情感態(tài)度:在探究活動(dòng)中培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度和勇于探索的科學(xué)精神,在師生、生生的交流活動(dòng)中,學(xué)會(huì)與人合作,學(xué)會(huì)傾聽、欣賞和感悟,體驗(yàn)數(shù)學(xué)的價(jià)值,建立自信心。

  二、教法說(shuō)明

  對(duì)于認(rèn)知主體——學(xué)生來(lái)說(shuō),他們已經(jīng)具備了初步探究問(wèn)題的能力,但是對(duì)知識(shí)的主動(dòng)遷移能力較弱,為使學(xué)生更好地構(gòu)建新的認(rèn)知結(jié)構(gòu),促進(jìn)學(xué)生的發(fā)展,我將在教學(xué)中采用探究式教學(xué)法。以學(xué)生為中心,使其在“生動(dòng)活潑、民主開放、主動(dòng)探索”的氛圍中愉快地學(xué)習(xí)。

  三、教學(xué)過(guò)程

  (一)感知身邊數(shù)學(xué)

  學(xué)生已經(jīng)學(xué)習(xí)過(guò)列方程(組)解應(yīng)用題,因此可能列出一元一次方程或二元一次方程組,用方程模型解決問(wèn)題。結(jié)合前面對(duì)一次函數(shù)與一元一次方程、一元一次不等式之間關(guān)系的探究,我自然地提出問(wèn)題:“一次函數(shù)與二元一次方程組之間是否也有聯(lián)系呢?”,從而揭示課題。

  [設(shè)計(jì)意圖]建構(gòu)主義認(rèn)為,在實(shí)際情境中學(xué)習(xí)可以激發(fā)學(xué)生的學(xué)習(xí)興趣。因此,用“上網(wǎng)收費(fèi)”這一生活實(shí)際創(chuàng)設(shè)情境,并用問(wèn)題啟發(fā)學(xué)生去思、鼓勵(lì)學(xué)生去探、激勵(lì)學(xué)生去說(shuō),努力給學(xué)生造成“心求通而未能得,口欲言而不能說(shuō)”的情勢(shì),從而喚起學(xué)生強(qiáng)烈的求知欲,使他們以躍躍欲試的姿態(tài)投入到探索活動(dòng)中來(lái)。

  教學(xué)引入

  師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長(zhǎng)方形折疊就可以得到一個(gè)正方形,F(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長(zhǎng)方形紙條,按動(dòng)畫所示進(jìn)行折疊處理。

  動(dòng)畫演示:

  場(chǎng)景一:正方形折疊演示

  師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來(lái)研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線之間的關(guān)系。請(qǐng)大家測(cè)量各邊的長(zhǎng)度、各角的大小、對(duì)角線的長(zhǎng)度以及對(duì)角線交點(diǎn)到各頂點(diǎn)的長(zhǎng)度。

  [學(xué)生活動(dòng):各自測(cè)量。]

  鼓勵(lì)學(xué)生將測(cè)量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。

  講授新課

  找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語(yǔ)言的規(guī)范性。

  動(dòng)畫演示:

  場(chǎng)景二:正方形的性質(zhì)

  師:這些性質(zhì)里那些是矩形的性質(zhì)?

  [學(xué)生活動(dòng):尋找矩形性質(zhì)。]

  動(dòng)畫演示:

  場(chǎng)景三:矩形的性質(zhì)

  師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

  [學(xué)生活動(dòng);尋找菱形性質(zhì)。]

  動(dòng)畫演示:

  場(chǎng)景四:菱形的性質(zhì)

  師:這說(shuō)明正方形具有矩形和菱形的全部性質(zhì)。

  及時(shí)提出問(wèn)題,引導(dǎo)學(xué)生進(jìn)行思考。

  師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?

  [學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]

  師:請(qǐng)同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

  學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書:

  “有一組鄰邊相等的矩形叫做正方形。”

  “有一個(gè)角是直角的菱形叫做正方形!

  “有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形!

  [學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

  師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

  (二)享受探究樂(lè)趣

  1、探究一次函數(shù)與二元一次方程的關(guān)系

  [設(shè)計(jì)意圖]用一連串的問(wèn)題引導(dǎo)學(xué)生發(fā)現(xiàn)一次函數(shù)與二元一次方程在數(shù)與形兩個(gè)方面的關(guān)系,為探索二元一次方程組的解與直線交點(diǎn)坐標(biāo)的關(guān)系作好鋪墊。

  2、探究一次函數(shù)與二元一次方程組的關(guān)系

  [設(shè)計(jì)意圖]學(xué)生經(jīng)過(guò)自主探索、合作交流,從數(shù)和形兩個(gè)角度認(rèn)識(shí)一次函數(shù)與二元一次方程組的關(guān)系,真正掌握本節(jié)課的重點(diǎn)知識(shí),從而在頭腦中再現(xiàn)知識(shí)的形成過(guò)程,避免單純地記憶,使學(xué)習(xí)過(guò)程成為一種再創(chuàng)造的過(guò)程。此時(shí)教師及時(shí)對(duì)學(xué)生進(jìn)行鼓勵(lì),充分肯定學(xué)生的探究成果,關(guān)注學(xué)生的情感體驗(yàn)。

  (三)乘坐智慧快車

  例題:我市一家電信公司給顧客提供兩種上網(wǎng)收費(fèi)方式:方式A以每分0。1元的價(jià)格按上網(wǎng)時(shí)間計(jì)費(fèi);方式B除收月基費(fèi)20元外再以每分0。05元的價(jià)格按上網(wǎng)時(shí)間計(jì)費(fèi)。如何選擇收費(fèi)方式能使上網(wǎng)者更合算?

  [設(shè)計(jì)意圖]為培養(yǎng)學(xué)生的發(fā)散思維和規(guī)范解題的習(xí)慣,引導(dǎo)學(xué)生將上網(wǎng)問(wèn)題延伸為例題,并用問(wèn)題:“你家選擇的上網(wǎng)收費(fèi)方式好嗎?”再次激起學(xué)生強(qiáng)烈的求知欲望和主人翁的學(xué)習(xí)姿態(tài)。通過(guò)此問(wèn)題的探究,使學(xué)生有效地理解本節(jié)課的難點(diǎn),體會(huì)數(shù)形結(jié)合這一思想方法的應(yīng)用。

  (四)體驗(yàn)成功喜悅

  1、搶答題

  2、旅游問(wèn)題

  [設(shè)計(jì)意圖]抓住學(xué)生對(duì)競(jìng)爭(zhēng)充滿興趣的心理特征,用搶答題使學(xué)生的眼、耳、腦、口得到充分的調(diào)動(dòng),并在搶答中品味成功的快樂(lè),提高思維的速度。在學(xué)生感興趣的旅游問(wèn)題中,進(jìn)一步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),更好地促進(jìn)學(xué)生對(duì)本節(jié)課難點(diǎn)的理解和應(yīng)用,幫助學(xué)生不斷完善新的認(rèn)知結(jié)構(gòu)。

  (五)分享你我收獲

  在課堂臨近尾聲時(shí),向?qū)W生提出:通過(guò)今天的學(xué)習(xí),你有什么收獲?你印象最深的是什么?

  [設(shè)計(jì)意圖]培養(yǎng)學(xué)生歸納和語(yǔ)言表達(dá)能力,鼓勵(lì)學(xué)生從數(shù)學(xué)知識(shí)、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進(jìn)行自我評(píng)價(jià)。

  (六)開拓嶄新天地

  1、數(shù)學(xué)日記

  2、布置作業(yè)

  [設(shè)計(jì)意圖]新課程強(qiáng)調(diào)發(fā)展學(xué)生數(shù)學(xué)交流的能力,用數(shù)學(xué)日記給學(xué)生提供一種表達(dá)數(shù)學(xué)思想方法和情感的方式,以體現(xiàn)評(píng)價(jià)體系的多元化,并使學(xué)生嘗試用數(shù)學(xué)的眼睛觀察事物,體驗(yàn)數(shù)學(xué)的價(jià)值。作業(yè)由必做題和選做題組成,體現(xiàn)分層教學(xué),讓“不同的人在數(shù)學(xué)上得到不同的發(fā)展”。

  四、教學(xué)設(shè)計(jì)反思

  1、貫穿一個(gè)原則——以學(xué)生為主體的原則

  2、突出一個(gè)思想——數(shù)形結(jié)合的思想

  3、體現(xiàn)一個(gè)價(jià)值——數(shù)學(xué)建模的價(jià)值

  4、滲透一個(gè)意識(shí)——應(yīng)用數(shù)學(xué)的意識(shí)

二元一次方程教案 篇5

  教學(xué)目標(biāo)1、經(jīng)歷用方程組解決實(shí)際問(wèn)題的過(guò)程,體會(huì)方程組是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型;

  2、能夠找出實(shí)際問(wèn)題中的已知數(shù)和未知數(shù),分析它們之間的數(shù)量關(guān)系,列出方程組;

  3、學(xué)會(huì)開放性地尋求設(shè)計(jì)方案,培養(yǎng)分析

  教學(xué)難點(diǎn)用方程組刻畫和解決實(shí)際問(wèn)題的過(guò)程。

  知識(shí)重點(diǎn)經(jīng)歷和體驗(yàn)用方程組解決實(shí)際問(wèn)題的過(guò)程。

  教學(xué)過(guò)程(師生活動(dòng))設(shè)計(jì)理念

  創(chuàng)設(shè)情境前面我們初步體驗(yàn)了用方程組解決實(shí)際問(wèn)題的全過(guò)程,其實(shí)生產(chǎn)、生活中還有許多問(wèn)題也能用方程組解決.

 。ǔ鍪締(wèn)題)據(jù)以往的統(tǒng)計(jì)資料,甲、乙兩種作物的單位面積產(chǎn)量的比是1:1:5,現(xiàn)要在一塊長(zhǎng)200 m,寬100 m的長(zhǎng)方形土地上種植這兩種作物,怎樣把這塊地分為兩個(gè)長(zhǎng)方形,使甲、乙兩種作物的總產(chǎn)量的比是3:4(結(jié)果取整數(shù))?以學(xué)生身邊的實(shí)際問(wèn)題展開學(xué)習(xí),突出數(shù)學(xué)與現(xiàn)實(shí)的聯(lián)系,培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí)。

  探索分析

  研究策略以上問(wèn)題有哪些解法?

  學(xué)生自主探索,合作交流,整理思路:

  (1)先確定有兩種方法分割長(zhǎng)方形;再分別求出兩個(gè)小長(zhǎng)方形的面積;最后計(jì)算分割線的位置.

  (2)先求兩個(gè)小長(zhǎng)方形的面積比,再計(jì)算分割線的位置.

  (3)設(shè)未知數(shù),列方程組求解.

  ……

  學(xué)生經(jīng)討論后發(fā)現(xiàn)列方程組求解較為方便.多角度分析問(wèn)題,多策略解決問(wèn)題,提高思維的發(fā)散性。

  合作交流

  解決問(wèn)題引導(dǎo)學(xué)生回顧列方程解決實(shí)際問(wèn)題的基本思路

  (1)設(shè)未知數(shù)

 。2)找相等關(guān)系

  (3)列方程組

 。4)檢驗(yàn)并作答

  如圖,一種種植方案為:甲、乙兩種作物的種植區(qū)域分別為長(zhǎng)方形aefd和bcfe.設(shè)ae=xm,be=ym,根據(jù)問(wèn)題中涉及長(zhǎng)度、產(chǎn)量的數(shù)量關(guān)系,列方程組

  解這個(gè)方程組得

  過(guò)長(zhǎng)方形土地的長(zhǎng)邊上離一端約106 m處,把這塊地分

  為兩個(gè)長(zhǎng)方形.較大一塊地種甲作物,較小一塊地種乙作物.

  你還能設(shè)計(jì)別的種植方案嗎?

  用類似的方法,可沿平行于線段ab的方向分割長(zhǎng)

  方形.

  教師巡視、指導(dǎo),師生共同講評(píng).

  比較分析,加深對(duì)方程組的認(rèn)識(shí)。

  畫圖,數(shù)形結(jié)合,輔助學(xué)生分析。

  進(jìn)一步滲透模型化的思想。

  引發(fā)學(xué)生思考,尋求解決途徑。

  拓展探究

  綜合應(yīng)用學(xué)生在手工實(shí)踐課中,遇到這樣一個(gè)問(wèn)題:要用20張白卡紙制作包裝紙盒,每張白卡紙可以做盒身2個(gè),或者做盒底蓋3個(gè),如果1個(gè)盒身和2個(gè)盒底蓋可以做成一個(gè)包裝紙盒,那么能否將這些白卡紙分成兩部分,一部分做盒身,一部分做盒底蓋,使做成的盒身和盒底蓋正好配套?請(qǐng)你設(shè)計(jì)一種分法.

  按以下步驟展開問(wèn)題的討論:

 。╨)學(xué)生獨(dú)立思考,構(gòu)建數(shù)學(xué)模型.

  (2)小組討論達(dá)成共識(shí).

 。3)學(xué)生板書講解.

 。4)對(duì)方程組的解進(jìn)行探究和討論,從而得到實(shí)際問(wèn)題的結(jié)果.

  (5)針對(duì)以上結(jié)論,你能再提出幾個(gè)探索性問(wèn)題嗎?以學(xué)生學(xué)習(xí)生活中遇到的

  問(wèn)題展開討論,鞏固用二元一次

  方程組解決實(shí)際問(wèn)題的一般過(guò)程,并不斷提高分析問(wèn)題的能力.安排開放題,以利于培養(yǎng)學(xué)生探索精神和創(chuàng)新意識(shí).

  小結(jié)與作業(yè)

  小結(jié)提高提問(wèn):通過(guò)本節(jié)課的討論,你對(duì)用方程解決實(shí)際的方法又有何新的認(rèn)識(shí)?

  學(xué)生思考后回答、整理.

  布置作業(yè)12、必做題:教科書116頁(yè)習(xí)題8.3第1(2)、4題。

  13、選做題:教科書117頁(yè)習(xí)題8.3第7題。

  14、備15、選題:

 。3)解方程組

 。2)小穎在拼圖時(shí),發(fā)現(xiàn)8個(gè)一樣大小的矩形(如圖1所示),恰好可以拼成一個(gè)大的矩形.

  小彬看見了,說(shuō):“我來(lái)試一試.”結(jié)果小彬七拼八湊,拼成如圖2那樣的正方形.咳,怎么中間還留下一個(gè)洞,恰好是邊長(zhǎng)2 mm的小正方形!

  你能幫他們解開其中的奧秘嗎?

  提示學(xué)生先動(dòng)手實(shí)踐,再分析討論.

  分層次布1作業(yè).其中“必

  做題”面向全體學(xué)生,鞏固知識(shí)、

  方法,加深理解廠選做題”面向

  部分學(xué)有余力的學(xué)生,給他們一

  定的時(shí)間和空間,相互合作,自主探究,增強(qiáng)實(shí)踐能力.備選通供教師參考.

  本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)

  本課所提供的例題、練習(xí)題、作業(yè)題突出體現(xiàn)以下特點(diǎn):

  1、活動(dòng)性.學(xué)生在圖形分割、手工操作、拼圖游戲中展開數(shù)學(xué)問(wèn)題的討論,更具趣味性,學(xué)生在玩中學(xué)、做中學(xué),在增強(qiáng)能力的同時(shí),收獲快樂(lè).

  2、探索性.問(wèn)題解決的策略不易獲得,問(wèn)題中的數(shù)量關(guān)系不易發(fā)現(xiàn),問(wèn)題中的未知數(shù)不

  易設(shè)定,這為學(xué)生開展探究活動(dòng)提供了機(jī)會(huì).

  3、開放性.解決問(wèn)題的策略、方法、問(wèn)題的結(jié)論的開放性設(shè)計(jì),意在增強(qiáng)學(xué)生的創(chuàng)新意識(shí)和培養(yǎng)勇于挑戰(zhàn)、克服困難的能力.

二元一次方程教案 篇6

  教學(xué)目標(biāo):

  1.會(huì)用加減消元法解二元一次方程組.

  2.能根據(jù)方程組的特點(diǎn),適當(dāng)選用代入消元法和加減消元法解二元一次方程組.

  3.了解解二元一次方程組的消元方法,經(jīng)歷從“二元”到“一元”的轉(zhuǎn)化過(guò)程,體會(huì)解二元一次方程組中化“未知”為“已知”的“轉(zhuǎn)化”的思想方法.

  教學(xué)重點(diǎn):

  加減消元法的理解與掌握

  教學(xué)難點(diǎn):

  加減消元法的靈活運(yùn)用

  教學(xué)方法:

  引導(dǎo)探索法,學(xué)生討論交流

  教學(xué)過(guò)程:

  一、情境創(chuàng)設(shè)

  買3瓶蘋果汁和2瓶橙汁共需要23元,買5瓶蘋果汁和2瓶橙汁共需33元,每瓶蘋果汁和每瓶橙汁售價(jià)各是多少?

  設(shè)蘋果汁、橙汁單價(jià)為x元,y元.

  我們可以列出方程3x+2y=23

  5x+2y=33

  問(wèn):如何解這個(gè)方程組?

  二、探索活動(dòng)

  活動(dòng)一:1、上面“情境創(chuàng)設(shè)”中的方程,除了用代入消元法解以外,還有其他方法求解嗎?

  2、這些方法與代入消元法有何異同?

  3、這個(gè)方程組有何特點(diǎn)?

  解法一:3x+2y=23①

  5x+2y=33②

  由①式得③

  把③式代入②式

  33

  解這個(gè)方程得:y=4

  把y=4代入③式

  則

  所以原方程組的解是x=5

  y=4

  解法二:3x+2y=23①

  5x+2y=33②

  由①—②式:

  3x+2y-(5x+2y)=23-33

  3x-5x=-10

  解這個(gè)方程得:x=5

  把x=5代入①式,

  3×5+2y=23

  解這個(gè)方程得y=4

  所以原方程組的解是x=5

  y=4

  把方程組的兩個(gè)方程(或先作適當(dāng)變形)相加或相減,消去其中一個(gè)未知數(shù),把解二元一次方程組轉(zhuǎn)化為解一元一次方程,這種解方程組的方法叫做加減消元法(eliminationbyadditionorsubtraction),簡(jiǎn)稱加減法.

  三、例題教學(xué):

  例1.解方程組x+2y=1①

  3x-2y=5②

  解:①+②得,4x=6

  將代入①,得

  解這個(gè)方程得:

  所以原方程組的解是

  鞏固練習(xí)(一):練一練1.(1)

  例2.解方程組5x-2y=4①

  2x-3y=-5②

  解:①×3,得

  15x-6y=12③

 、凇3,得

  4x-6y=-10④

  ③—④,得:

  11x=22

  解這個(gè)方程得x=2

  將x=2代入①,得

  5×2-2y=4

  解這個(gè)方程得:y=3

  所以原方程組的解是x=2

  y=3

  鞏固練習(xí)(二):練一練1.(2)(3)(4)2.

  四、思維拓展

  解方程組:

  五、小結(jié):

  1、掌握加減消元法解二元一次方程組

  2、靈活選用代入消元法和加減消元法解二元一次方程組

  六、作業(yè)

  習(xí)題10.31.(3)(4)2.

二元一次方程教案 篇7

  一、復(fù)習(xí)引入

  (學(xué)生活動(dòng))解下列方程:

  (1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)

  老師點(diǎn)評(píng):(1)配方法將方程兩邊同除以2后,x前面的系數(shù)應(yīng)為12,12的一半應(yīng)為14,因此,應(yīng)加上(14)2,同時(shí)減去(14)2.(2)直接用公式求解.

  二、探索新知

  (學(xué)生活動(dòng))請(qǐng)同學(xué)們口答下面各題.

  (老師提問(wèn))(1)上面兩個(gè)方程中有沒有常數(shù)項(xiàng)?

  (2)等式左邊的各項(xiàng)有沒有共同因式?

  (學(xué)生先答,老師解答)上面兩個(gè)方程中都沒有常數(shù)項(xiàng);左邊都可以因式分解.

  因此,上面兩個(gè)方程都可以寫成:

  (1)x(2x+1)=0 (2)3x(x+2)=0

  因?yàn)閮蓚(gè)因式乘積要等于0,至少其中一個(gè)因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

  (2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何實(shí)現(xiàn)降次的?)

  因此,我們可以發(fā)現(xiàn),上述兩個(gè)方程中,其解法都不是用開平方降次,而是先因式分解使方程化為兩個(gè)一次式的乘積等于0的形式,再使這兩個(gè)一次式分別等于0,從而實(shí)現(xiàn)降次,這種解法叫做因式分解法.

  例1 解方程:

  (1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x-14=x2-2x+34 (4)(x-1)2=(3-2x)2

  思考:使用因式分解法解一元二次方程的條件是什么?

  解:略 (方程一邊為0,另一邊可分解為兩個(gè)一次因式乘積.)

  練習(xí):下面一元二次方程解法中,正確的是( )

  A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7

  B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35

  C.(x+2)2+4x=0,∴x1=2,x2=-2

  D.x2=x,兩邊同除以x,得x=1

  三、鞏固練習(xí)

  教材第14頁(yè) 練習(xí)1,2.

  四、課堂小結(jié)

  本節(jié)課要掌握:

  (1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其應(yīng)用.

  (2)因式分解法要使方程一邊為兩個(gè)一次因式相乘,另一邊為0,再分別使各一次因式等于0.

  五、作業(yè)布置

  教材第17頁(yè)習(xí)題6,8,10,11

二元一次方程教案 篇8

  教學(xué)目標(biāo)

  1.會(huì)用加減法解一般地二元一次方程組。

  2.進(jìn)一步理解解方程組的消元思想,滲透轉(zhuǎn)化思想。

  3.增強(qiáng)克服困難的勇力,提高學(xué)習(xí)興趣。

  教學(xué)重點(diǎn)

  把方程組變形后用加減法消元。

  教學(xué)難點(diǎn)

  根據(jù)方程組特點(diǎn)對(duì)方程組變形。

  教學(xué)過(guò)程

  一、復(fù)習(xí)引入

  用加減消元法解方程組。

  二、新課。

  1.思考如何解方程組(用加減法)。

  先觀察方程組中每個(gè)方程x的系數(shù),y的系數(shù),是否有一個(gè)相等。或互為相反數(shù)?

  能否通過(guò)變形化成某個(gè)未知數(shù)的系數(shù)相等,或互為相反數(shù)?怎樣變形。

  學(xué)生解方程組。

  2.例1.解方程組

  思考:能否使兩個(gè)方程中x(或y)的系數(shù)相等(或互為相反數(shù))呢?

  學(xué)生討論,小組合作解方程組。

  提問(wèn):用加減消元法解方程組有哪些基本步驟?

  三、練習(xí)。

  1.P40練習(xí)題(3)、(5)、(6)。

  2.分別用加減法,代入法解方程組。

  四、小結(jié)。

  解二元一次方程組的加減法,代入法有何異同?

  五、作業(yè)。

  P33.習(xí)題2.2A組第2題(3)~(6)。

  B組第1題。

  選作:閱讀信息時(shí)代小窗口,高斯消去法。

  后記:

  2.3二元一次方程組的應(yīng)用(1)

二元一次方程教案 篇9

  學(xué)習(xí)目標(biāo) :會(huì)運(yùn)用代入消元法解二元一次方程組.

  學(xué)習(xí)重難點(diǎn):

  1、會(huì)用代入法解二元一次方程組。

  2、靈活運(yùn)用代入法的技巧.

  學(xué)習(xí)過(guò)程:

  一、基本概念

  1、二元一次方程組中有兩個(gè)未知數(shù),如果消去其中一個(gè)未知數(shù),那么就把二元一次方程組轉(zhuǎn)化為我們熟悉的一元一次方程。我們可以先求出一個(gè)未知數(shù),然后再求另一個(gè)未知數(shù),。這種將未知數(shù)的個(gè)數(shù)由多化少、逐一解決的思想,叫做____________。

  2、把二元一次方程組中一個(gè)方程的一個(gè)未知數(shù)用含另一個(gè)未知數(shù)的式子表示出來(lái),再代入另一個(gè)方程,實(shí)現(xiàn)消元,進(jìn)而求得這個(gè)二元一次方程組的解,這種方法叫做________,簡(jiǎn)稱_____。

  3、代入消元法的步驟:

  二、自學(xué)、合作、探究

  1、將方程5x-6y=12變形:若用y的式子表示x,則x=______,當(dāng)y=-2時(shí),x=_______;若用含x的式子表示y,則y=______,當(dāng)x=0時(shí),y=________ 。

  2、在方程2x+6y-5=0中,當(dāng)3y=-4時(shí),2x= ____________。

  3、若 的解,則a=______,b=_______。

  4、若方程y=1-x的解也是方程3x+2y=5的解,則x=____,y=____。

  5、用代人法解方程組 ①②,把____代人____,可以消去未知數(shù)______。

  6、已知方程組 的解也是方程組 的解,則a=_______,b=________ ,3a+2b=___________。

  7、已知x=1和x=2都滿足關(guān)于x的`方程x2+px+q=0,則p=_____,q=________ 。

  8、當(dāng)k=______時(shí),方程組 的解中x與y的值相等。

  9、用代入法解下列方程組:

  ⑴ ⑵ ⑶

  二、訓(xùn)練

  1、方程組 的解是( )

  A. B. C. D.

  2、已知二元一次方程3x+4y=6,當(dāng)x、y互為相反數(shù)時(shí),x=_____,y=______;當(dāng)x、y相等時(shí),x=______,y= _______ 。

  3、若2ay+5b3x與-4a2xb2-4y是同類項(xiàng),則a=______,b=_______。

  4、對(duì)于關(guān)于x、y的方程y=kx+b,k比b大1,且當(dāng)x= 時(shí),y= ,則k、b的值分別是( )

  A. B.2,1 C.-2,1 D.-1,0

  5、用代入法解下列方程組

  ⑴ ⑵

  6、如果(5a-7b+3)2+ =0,求a與b的值。

  7、已知2x2m-3n-7-3ym+3n+6=8是關(guān)于x,y的二元一次方程,求n2m

  8、若方程組 與 有公共的解,求a,b.

二元一次方程教案 篇10

  7.2 一元二次方程組的解法

  ------第六課時(shí)

  教學(xué)目的

  1.使學(xué)生會(huì)借助二元一次方程組解決簡(jiǎn)單的實(shí)際問(wèn)題,讓學(xué)生再次體會(huì)二元一次方程組與現(xiàn)實(shí)生活的聯(lián)系和作用。

  2.通過(guò)應(yīng)用題的教學(xué)使學(xué)生進(jìn)一步使用代數(shù)中的方程去反映現(xiàn)實(shí)世界中的等量關(guān)系,體會(huì)代數(shù)方法的優(yōu)越性,體會(huì)列方程組往往比列一元一次方程容易。

  3.進(jìn)一步培養(yǎng)學(xué)生化實(shí)際問(wèn)題為數(shù)學(xué)問(wèn)題的能力和分析問(wèn)題解決問(wèn)題的能力。

  重點(diǎn)、難點(diǎn)、關(guān)鍵

  1、重、難點(diǎn):根據(jù)題意,列出二元一次方程組。

  2、關(guān)鍵:正確地找出應(yīng)用題中的兩個(gè)等量關(guān)系,并把它們列成方程。

  教學(xué)過(guò)程

  一、復(fù)習(xí)

  我們已學(xué)習(xí)了列一元一次方程解決實(shí)際問(wèn)題,大家回憶列方程解應(yīng)用題的步驟,其中關(guān)鍵步驟是什么?

  [審題;設(shè)未知數(shù);列方程;解方程;檢驗(yàn)并作答。關(guān)鍵是審題,尋找 出等量關(guān)系]

  在本節(jié)開頭我們已借助列二元一次方程組解決了有2個(gè)未知數(shù)的實(shí)際問(wèn)題。大家已初步體會(huì)到:對(duì)兩個(gè)未知數(shù)的應(yīng)用題列一次方程組往往比列一元一次方程要容易一些。

  二、新授

  例l:某蔬菜公司收購(gòu)到某種蔬菜140噸,準(zhǔn)備加工后上市銷售,該公司的加工能力是:每天精加工6噸或者粗加工16噸,現(xiàn)計(jì)劃用15天完成加工任務(wù),該公司應(yīng)安排幾天粗加工,幾天精加工,才能按期完成任務(wù)?如果每噸蔬菜粗加工后的利潤(rùn)為1000元,精加工后為20xx元,那么該公司出售這些加工后的蔬菜共可獲利多少元?

  分析:解決這個(gè)問(wèn)題的關(guān)鍵是先解答前一個(gè)問(wèn)題,即先求出安排精加和粗加工的天數(shù),如果我們用列方程組的辦法來(lái)解答。

  可設(shè)應(yīng)安排x天精加工,y加粗加工,那么要找出能反映整個(gè)題意的兩個(gè)等量關(guān)系。引導(dǎo)學(xué)生尋找等量關(guān)系。

  (1)精加工天數(shù)與粗加工天數(shù)的和等于15天。

  (2)精加工蔬菜的噸數(shù)與粗加工蔬菜的噸數(shù)和為140噸。

  指導(dǎo)學(xué)生列出方程。對(duì)于有困難的學(xué)生也可以列表幫助分析。

  例2:有大小兩種貨車,2輛大車與3輛小車一次可以運(yùn)貨15.50噸,5輛大車與6輛小車一次可以運(yùn)貨35噸。

  求:3輛大車與5輛小車一次可以運(yùn)貨多少噸?

  分析:要解決這個(gè)問(wèn)題的關(guān)鍵是求每輛大車和每輛小車一次可運(yùn)貨多少噸?

  如果設(shè)一輛大車每次可以運(yùn)貨x噸,一輛小車每次可以運(yùn)貨y噸,那么能反映本題意的兩個(gè)等量頭條是什么?

  指導(dǎo)學(xué)生分析出等量關(guān)系。

 。1) 2輛大車一次運(yùn)貨+3輛小車一次運(yùn)貨=15. 5

 。2) 5輛大車一次運(yùn)貨+6輛小車一次運(yùn)貨=35

  根據(jù)題意,列出方程,并解答。教師指導(dǎo)。

  三、鞏固練習(xí)

  教科書第34頁(yè)練習(xí)l、2、3。

  第3題:首先讓學(xué)生明白什么叫充分利用這船的載重量與容量,讓學(xué)生找出兩個(gè)等量關(guān)系。

  四、小結(jié)

  列二元一次方程組解應(yīng)用題的步驟。

  1.審題,弄清題目中的數(shù)量關(guān)系,找出未知數(shù),用x、y表示所要求的兩個(gè)未知數(shù)。

  2.找到能表示應(yīng)用題全部含義的兩個(gè)等量關(guān)系。

  3.根據(jù)兩個(gè)等量關(guān)系,列出方程組。

  4.解方程組。

  5.檢驗(yàn)作答案。

  五、作業(yè)

  1.教科書第35頁(yè),習(xí)題7.2第2、3、4題。

二元一次方程教案 篇11

  一、教材分析

  1、教材的地位和作用

  函數(shù)、方程和不等式都是人們刻畫現(xiàn)實(shí)世界的重要數(shù)學(xué)模型。用函數(shù)的觀點(diǎn)看方程(組)與不等式,使學(xué)生不僅能加深對(duì)方程(組)、不等式的理解,提高認(rèn)識(shí)問(wèn)題的水平,而且能從函數(shù)的角度將三者統(tǒng)一起來(lái),感受數(shù)學(xué)的統(tǒng)一美。本節(jié)課是學(xué)生學(xué)習(xí)完一次函數(shù)、一元一次方程及一元一次不等式的聯(lián)系后對(duì)一次函數(shù)和二元一次方程(組)關(guān)系的探究,學(xué)生在探索過(guò)程中體驗(yàn)數(shù)形結(jié)合的思想方法和數(shù)學(xué)模型的應(yīng)用價(jià)值,這對(duì)今后的學(xué)習(xí)有著十分重要的意義。

  2、教學(xué)重難點(diǎn)

  重點(diǎn):一次函數(shù)與二元一次方程(組)關(guān)系的探索。

  難點(diǎn):綜合運(yùn)用方程(組)、不等式和函數(shù)的知識(shí)解決實(shí)際問(wèn)題。

  3、教學(xué)目標(biāo)

  知識(shí)技能:理解一次函數(shù)與二元一次方程(組)的關(guān)系,會(huì)用圖象法解二元一次方程組。

  數(shù)學(xué)思考:經(jīng)歷一次函數(shù)與二元一次方程(組)關(guān)系的探索及相關(guān)實(shí)際問(wèn)題的解決過(guò)程,學(xué)會(huì)用函數(shù)的觀點(diǎn)去認(rèn)識(shí)問(wèn)題。

  解決問(wèn)題:能綜合應(yīng)用一次函數(shù)、一元一次方程、一元一次不等式、二元一次方程(組)解決相關(guān)實(shí)際問(wèn)題。

  情感態(tài)度:在探究活動(dòng)中培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度和勇于探索的科學(xué)精神,在師生、生生的交流活動(dòng)中,學(xué)會(huì)與人合作,學(xué)會(huì)傾聽、欣賞和感悟,體驗(yàn)數(shù)學(xué)的價(jià)值,建立自信心。

  二、教法說(shuō)明

  對(duì)于認(rèn)知主體學(xué)生來(lái)說(shuō),他們已經(jīng)具備了初步探究問(wèn)題的能力,但是對(duì)知識(shí)的主動(dòng)遷移能力較弱,為使學(xué)生更好地構(gòu)建新的認(rèn)知結(jié)構(gòu),促進(jìn)學(xué)生的發(fā)展,我將在教學(xué)中采用探究式教學(xué)法。以學(xué)生為中心,使其在生動(dòng)活潑、民主開放、主動(dòng)探索的氛圍中愉快地學(xué)習(xí)。

  三、教學(xué)過(guò)程

  (一)感知身邊數(shù)學(xué)

  學(xué)生已經(jīng)學(xué)習(xí)過(guò)列方程(組)解應(yīng)用題,因此可能列出一元一次方程 或二元一次方程組,用方程模型解決問(wèn)題。結(jié)合前面對(duì)一次函數(shù)與一元一次方程、一元一次不等式之間關(guān)系的探究,我自然地提出問(wèn)題:一次函數(shù)與二元一次方程組之間是否也有聯(lián)系呢?,從而揭示課題。

  [設(shè)計(jì)意圖]建構(gòu)主義認(rèn)為,在實(shí)際情境中學(xué)習(xí)可以激發(fā)學(xué)生的學(xué)習(xí)興趣。因此,用上網(wǎng)收費(fèi)這一生活實(shí)際創(chuàng)設(shè)情境,并用問(wèn)題啟發(fā)學(xué)生去思、鼓勵(lì)學(xué)生去探、激勵(lì)學(xué)生去說(shuō),努力給學(xué)生造成心求通而未能得,口欲言而不能說(shuō)的情勢(shì),從而喚起學(xué)生強(qiáng)烈的求知欲,使他們以躍躍欲試的姿態(tài)投入到探索活動(dòng)中來(lái)。

  (二)享受探究樂(lè)趣

  1、探究一次函數(shù)與二元一次方程的關(guān)系

  [設(shè)計(jì)意圖]用一連串的問(wèn)題引導(dǎo)學(xué)生發(fā)現(xiàn)一次函數(shù)與二元一次方程在數(shù)與形兩個(gè)方面的關(guān)系,為探索二元一次方程組的解與直線交點(diǎn)坐標(biāo)的關(guān)系作好鋪墊。

  2、探究一次函數(shù)與二元一次方程組的關(guān)系

  [設(shè)計(jì)意圖] 學(xué)生經(jīng)過(guò)自主探索、合作交流,從數(shù)和形兩個(gè)角度認(rèn)識(shí)一次函數(shù)與二元一次方程組的關(guān)系,真正掌握本節(jié)課的重點(diǎn)知識(shí),從而在頭腦中再現(xiàn)知識(shí)的形成過(guò)程,避免單純地記憶,使學(xué)習(xí)過(guò)程成為一種再創(chuàng)造的過(guò)程。此時(shí)教師及時(shí)對(duì)學(xué)生進(jìn)行鼓勵(lì),充分肯定學(xué)生的探究成果,關(guān)注學(xué)生的情感體驗(yàn)。

  (三)乘坐智慧快車

  例題:我市一家電信公司給顧客提供兩種上網(wǎng)收費(fèi)方式:方式A以每分0.1元的價(jià)格按上網(wǎng)時(shí)間計(jì)費(fèi);方式B除收月基費(fèi)20元外再以每分0 .05元的價(jià)格按上網(wǎng)時(shí)間計(jì)費(fèi)。如何選擇收費(fèi)方式能使上網(wǎng)者更合算?

  [設(shè)計(jì)意圖]為培養(yǎng)學(xué)生的發(fā)散思維和規(guī)范解題的習(xí)慣,引導(dǎo)學(xué)生將上網(wǎng)問(wèn)題延伸為例題,并用問(wèn)題:你家選擇的上網(wǎng)收費(fèi)方式好嗎?再次激起學(xué)生強(qiáng)烈的求知欲望和主人翁的學(xué)習(xí)姿態(tài)。通過(guò)此問(wèn)題的探究,使學(xué)生有效地理解本節(jié)課的難點(diǎn),體會(huì)數(shù)形結(jié)合這一思想方法的應(yīng)用。

  (四)體驗(yàn)成功喜悅

  1、搶答題

  2、旅游問(wèn)題

  [設(shè)計(jì)意圖]抓住學(xué)生對(duì)競(jìng)爭(zhēng)充滿興趣的心理特征,用搶答題使學(xué)生的眼、耳、腦、口得到充分的調(diào)動(dòng),并在搶答中品味成功的快樂(lè),提高思維的速度。在學(xué)生感興趣的旅游問(wèn)題中,進(jìn)一步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),更好地促進(jìn)學(xué)生對(duì)本節(jié)課難點(diǎn)的理解和應(yīng)用,幫助學(xué)生不斷完善新的認(rèn)知結(jié)構(gòu)。

  (五)分享你我收獲

  在課堂臨近尾聲時(shí),向?qū)W生提出:通過(guò)今天的學(xué)習(xí),你有什么收獲?你印象最深的是什么?

  [設(shè)計(jì)意圖]培養(yǎng)學(xué)生歸納和語(yǔ)言表達(dá)能力,鼓勵(lì)學(xué)生從數(shù)學(xué)知識(shí)、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進(jìn)行自我評(píng)價(jià)。

  (六)開拓嶄新天地

  1、數(shù)學(xué)日記

  2、布置作業(yè)

  [設(shè)計(jì)意圖]新課程強(qiáng)調(diào)發(fā)展學(xué)生數(shù)學(xué)交流的能力,用數(shù)學(xué)日記給學(xué)生提供一種表達(dá)數(shù)學(xué)思想方法和情感的方式,以體現(xiàn)評(píng)價(jià)體系的多元化,并使學(xué)生嘗試用數(shù)學(xué)的眼睛觀察事物,體驗(yàn)數(shù)學(xué)的價(jià)值。作業(yè)由必做題和選做題組成,體現(xiàn)分層教學(xué),讓不同的人在數(shù)學(xué)上得到不同的發(fā)展。

  四、教學(xué)設(shè)計(jì)反思

  1、貫穿一個(gè)原則以學(xué)生為主體的原則

  2、突出一個(gè)思想數(shù)形結(jié)合的思想

  3、體現(xiàn)一個(gè)價(jià)值數(shù)學(xué)建模的價(jià)值

  4、滲透一個(gè)意識(shí)應(yīng)用數(shù)學(xué)的意識(shí)

  《一次函數(shù)與二元一次方程(組)》教案

  教學(xué)目標(biāo)

  知識(shí)技能:理解一次函數(shù)與二元一次方程(組)的關(guān)系,會(huì)用圖象法解二元一次方程組。

  情感態(tài)度:在探究活動(dòng)中培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度和勇于探索的科學(xué)精神,在師生、生生的交流活動(dòng)中,學(xué)會(huì)與人合作,學(xué)會(huì)傾聽、欣賞和感悟,體驗(yàn)數(shù)學(xué)的價(jià)值,建立自信心。

  教學(xué)重難點(diǎn)

  重點(diǎn):一次函數(shù)與二元一次方程(組)關(guān)系的探索。

  難點(diǎn):綜合運(yùn)用方程(組)、不等式和函數(shù)的知識(shí)解決實(shí)際問(wèn)題。

  教學(xué)過(guò)程

  (一)引入新課

  多媒體播放一段發(fā)生在電信公司里的情景:一顧客準(zhǔn)備辦理上網(wǎng)業(yè)務(wù),發(fā)現(xiàn)有兩種收費(fèi)方式:方式A以每分鐘0.1元的價(jià)格按上網(wǎng)時(shí)間計(jì)費(fèi);方式B除收月基費(fèi)20元外再以每分鐘0.05元的價(jià)格按上網(wǎng)時(shí)間計(jì)費(fèi)。顧客說(shuō)他每月上網(wǎng)的費(fèi)用按這兩種收費(fèi)方式計(jì)算都是一樣多。求這位顧客打算每月上網(wǎng)多長(zhǎng)時(shí)間?多少費(fèi)用?

  學(xué)生已經(jīng)學(xué)習(xí)過(guò)列方程(組)解應(yīng)用題,因此可能列出一元一次方程 或二元一次方程組,用方程模型解決問(wèn)題。結(jié)合前面對(duì)一次函數(shù)與一元一次方程、一元一次不等式之間關(guān)系的探究,我自然地提出問(wèn)題:一次函數(shù)與二元一次方程組之間是否也有聯(lián)系呢?,從而揭示課題。

  (二)進(jìn)行新課

  1、探究一次函數(shù)與二元一次方程的關(guān)系

  填空:二元一次方程 可以轉(zhuǎn)化為 ________。

  思考:(1)直線 上任意一點(diǎn) 一定是方程 的解嗎?(2)是否任意的二元一次方程都可以轉(zhuǎn)化為這種一次函數(shù)的形式?

  (3)是否直線上任意一點(diǎn)的坐標(biāo)都是它所對(duì)應(yīng)的二元一次方程的解?

  2、探究一次函數(shù)圖像與二元一次方程組的關(guān)系

  (1)在同一坐標(biāo)系中畫出一次函數(shù) 和 的圖象,觀察兩直線的交點(diǎn)坐標(biāo)是否是方程組 的解?并探索:是否任意兩個(gè)一次函數(shù)的交點(diǎn)坐標(biāo)都是它們所對(duì)應(yīng)的二元一次方程組的解?

  此時(shí)教師留給學(xué)生充分探索交流的時(shí)間與空間,對(duì)學(xué)生可能出現(xiàn)的疑問(wèn)給予幫助,師生共同歸納出:從形的角度看,解方程組相當(dāng)于確定兩條直線交點(diǎn)的坐標(biāo)。

  (2)當(dāng)自變量 取何值時(shí),函數(shù) 與 的值相等?這個(gè)函數(shù)值是什么?這一問(wèn)題與解方程組 是同一問(wèn)題嗎?

  進(jìn)一步歸納出:從數(shù)的角度看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)的值相等,以及這個(gè)函數(shù)值是何值。

  3、列一元二次不等式

  例題:我市一家電信公司給顧客提供兩種上網(wǎng)收費(fèi)方式:方式A以每分0.1元的價(jià)格按上網(wǎng)時(shí)間計(jì)費(fèi);方式B除收月基費(fèi)20元外再以每分0 .05元的價(jià)格按上網(wǎng)時(shí)間計(jì)費(fèi)。如何選擇收費(fèi)方式能使上網(wǎng)者更合算?

  解法1:設(shè)上網(wǎng)時(shí)間為 分,若按方式A則收 元;若按方式B則收 元。然后在同一坐標(biāo)系中分別畫出這兩個(gè)函數(shù)的圖象,計(jì)算出交點(diǎn)坐標(biāo) ,結(jié)合圖象,利用直線上點(diǎn)位置的高低直觀地比較函數(shù)值的大小,得到當(dāng)一個(gè)月內(nèi)上網(wǎng)時(shí)間少于400分時(shí),選擇方式A省錢;當(dāng)上網(wǎng)時(shí)間等于400分時(shí),選擇方式A、B沒有區(qū)別;當(dāng)上網(wǎng)時(shí)間多于400分時(shí),選擇方式B省錢。

  解法2:設(shè)上網(wǎng)時(shí)間為 分,方式B與方式A兩種計(jì)費(fèi)的差額為 元,得到一次函數(shù): ,即 ,然后畫出函數(shù)的圖象,計(jì)算出直線與 軸的交點(diǎn)坐標(biāo),類似地用點(diǎn)位置的高低直觀地找到答案。

  注意:所畫的函數(shù)圖象都是射線。

  4、習(xí)題

  (1)、以方程 的解為坐標(biāo)的所有點(diǎn)都在一次函數(shù) _____的圖象上。

  (2)、方程組 的解是________,由此可知,一次函數(shù) 與 的圖象必有一個(gè)交點(diǎn),且交點(diǎn)坐標(biāo)是________。

  5、旅游問(wèn)題

  古城荊州歷史悠久,文化燦爛。

  今年,大型歷史劇《萬(wàn)歷首輔張居正》在荊州封鏡后,來(lái)荊州的游客更是絡(luò)繹不絕。據(jù)悉,張居正紀(jì)念館門票標(biāo)價(jià)20元/張,近期正在進(jìn)行優(yōu)惠活動(dòng),購(gòu)買時(shí)有兩種方式:方式A是團(tuán)隊(duì)中每位游客按8折購(gòu)買;方式B是團(tuán)隊(duì)中除5張按標(biāo)價(jià)購(gòu)買外,其余按7折購(gòu)買。如果你是團(tuán)隊(duì)的負(fù)責(zé)人,你會(huì)如何選擇購(gòu)買方式使整個(gè)團(tuán)隊(duì)更合算?

二元一次方程教案 篇12

  【教學(xué)目標(biāo)】

  知識(shí)目標(biāo):

 、偈箤W(xué)生初步理解二元一次方程與一次函數(shù)的關(guān)系。

 、谀芨鶕(jù)一次函數(shù)的圖象求二元一次方程組的近似解。

  能力目標(biāo):

  通過(guò)學(xué)生的思考和操作,力圖提示出方程與圖象之間的關(guān)系,引入二元一次方程組圖象解法,同時(shí)培養(yǎng)學(xué)生初步的數(shù)形結(jié)合的意識(shí)和能力。

  情感目標(biāo):

  通過(guò)學(xué)生的自主探索,提示出方程和圖象之間的對(duì)應(yīng)關(guān)系,加強(qiáng)新舊知識(shí)的聯(lián)系,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  重點(diǎn)要求:

  1、二元一次方程和一次函數(shù)的關(guān)系。

  2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解。

  難點(diǎn)突破:

  經(jīng)歷觀察、思考、操作、探究、交流等數(shù)學(xué)活動(dòng),培養(yǎng)學(xué)生抽象思維能力,并體會(huì)方程和函數(shù)之間的對(duì)應(yīng)關(guān)系,即數(shù)形結(jié)合思想。

  【教學(xué)過(guò)程】

  一、學(xué)前先思

  師:請(qǐng)同學(xué)們思考,我們已經(jīng)學(xué)過(guò)的二元一次方程組的解法有哪些?

  生:代入消元法、加減消元法。

  師:請(qǐng)你猜測(cè)還有其他的解法嗎?

  生:(小聲議論,有人提出圖象解法)

  師:看來(lái)的同學(xué)似乎已經(jīng)提前做了預(yù)習(xí)工作,很好!那么對(duì)于課題“二元一次方程組的圖象解法”,你想提什么問(wèn)題?

  生:二元一次方程組怎么會(huì)有圖象?它的圖象應(yīng)該怎樣畫?

  生:二元一次方程組的圖象解法怎么做?

  師:同學(xué)們都問(wèn)得很好!那你有喜歡的二元一次方程組嗎?

  生:(比較害羞)

  師:看來(lái)大家比較害羞,那么請(qǐng)大家把各自喜歡的二元一次方程組留在心里。讓我們帶著同學(xué)們提出的問(wèn)題從二元一次方程開始今天的學(xué)習(xí)。

  二、探究導(dǎo)學(xué)

  題目:

  判斷上面幾組解中哪些是二元一次方程的解?

  生:和不是,其余各組均是方程的解。

  師:請(qǐng)?jiān)趯W(xué)案上的直角坐標(biāo)系中先畫出一次函數(shù)的圖象,再標(biāo)出以上述的方程的解中為橫坐標(biāo),為縱坐標(biāo)的點(diǎn),思考:二元一次方程的解與一次函數(shù)圖象上的點(diǎn)有什么關(guān)系?

  教學(xué)引入

  師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長(zhǎng)方形折疊就可以得到一個(gè)正方形,F(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長(zhǎng)方形紙條,按動(dòng)畫所示進(jìn)行折疊處理。

  動(dòng)畫演示:

  場(chǎng)景一:正方形折疊演示

  師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來(lái)研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線之間的關(guān)系。請(qǐng)大家測(cè)量各邊的長(zhǎng)度、各角的大小、對(duì)角線的長(zhǎng)度以及對(duì)角線交點(diǎn)到各頂點(diǎn)的長(zhǎng)度。

  [學(xué)生活動(dòng):各自測(cè)量。]

  鼓勵(lì)學(xué)生將測(cè)量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。

  講授新課

  找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語(yǔ)言的規(guī)范性。

  動(dòng)畫演示:

  場(chǎng)景二:正方形的性質(zhì)

  師:這些性質(zhì)里那些是矩形的性質(zhì)?

  [學(xué)生活動(dòng):尋找矩形性質(zhì)。]

  動(dòng)畫演示:

  場(chǎng)景三:矩形的性質(zhì)

  師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

  [學(xué)生活動(dòng);尋找菱形性質(zhì)。]

  動(dòng)畫演示:

  場(chǎng)景四:菱形的性質(zhì)

  師:這說(shuō)明正方形具有矩形和菱形的全部性質(zhì)。

  及時(shí)提出問(wèn)題,引導(dǎo)學(xué)生進(jìn)行思考。

  師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?

  [學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]

  師:請(qǐng)同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

  學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書:

  “有一組鄰邊相等的矩形叫做正方形。”

  “有一個(gè)角是直角的菱形叫做正方形!

  “有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形。”

  [學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

  師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

  生:我發(fā)現(xiàn)二元一次方程的解就是相對(duì)應(yīng)的一次函數(shù)圖象上的點(diǎn)的坐標(biāo)。

  師:很好!反過(guò)來(lái),請(qǐng)問(wèn):一次函數(shù)圖象上的點(diǎn)的坐標(biāo)是否是與其相對(duì)應(yīng)的二元一次方程的解呢?

  生:是的。并且二元一次方程的解中的、的值就是相對(duì)應(yīng)的一次函數(shù)圖象上點(diǎn)的橫、縱坐標(biāo)的值。

  三、鞏固基礎(chǔ)

  師:非常好!那下面的題目你會(huì)解嗎?

  (學(xué)生讀題)題目:方程有一個(gè)解是,則一次函數(shù)的圖象上必有一個(gè)點(diǎn)的坐標(biāo)為______.

  生:(2,1)

  (學(xué)生讀題)題目:一次函數(shù)的圖象上有一個(gè)點(diǎn)的坐標(biāo)為(3,2),則方程必有一個(gè)解是_________.

  生:

  師:你能把下面的二元一次方程轉(zhuǎn)化成相應(yīng)的一次函數(shù)嗎?

  (學(xué)生讀題)把下列二元一次方程轉(zhuǎn)化成的形式:

  (1)(2)

  生:第(1)題利用移項(xiàng),得到,所以

  第(2)題利用移項(xiàng),得到,兩邊同時(shí)除以2,所以

  四、感悟提升

  師:如果將和組成二元一次方程組,你能用代入消元法或者加減消元法求出它的解嗎?

  生:能,我算出

  師:很好!你能在同一直角坐標(biāo)系中畫出一次函數(shù)與的圖象嗎?

  生:可以。(動(dòng)手在學(xué)案上畫圖)

  師:觀察兩條直線的位置關(guān)系,你有什么發(fā)現(xiàn)?

  生:我發(fā)現(xiàn)這兩條直線相交,并且交點(diǎn)坐標(biāo)是(2,1)。

  師:通過(guò)以上活動(dòng),你能得到什么結(jié)論?

  生:我發(fā)現(xiàn)剛剛求出的二元一次方程的解剛好就是一次函數(shù)與的圖象的交點(diǎn)坐標(biāo)(2,1)。

  師:很好!你能抽象成一般的結(jié)論嗎?

  生:如果兩個(gè)一次函數(shù)的圖象有一個(gè)交點(diǎn),那么交點(diǎn)的坐標(biāo)就是相應(yīng)的二元一次方程組的解。

  師:非常好!用一次函數(shù)的圖象解二元一次方程組的方法就是我們今天要學(xué)習(xí)的二元一次方程組的圖象解法。

  師:你能學(xué)以致用嗎?

  y=2x-5

  y=-x+1

  題目:如圖,方程組的解是___________.

  生:根據(jù)圖象可知:一次函數(shù)與的圖象的交點(diǎn)是(2,-1),因此,方程組的解是。

  師:回答得真棒!

  五、例題教學(xué)

  例題:利用一次函數(shù)的圖象解二元一次方程組。

  師:請(qǐng)大家在學(xué)案的做中感悟欄內(nèi)上大膽地寫出解題過(guò)程。

  生:(投影展示解題過(guò)程)略。

  師:很好!讓我們一起來(lái)看一下老師準(zhǔn)備的解題過(guò)程(略)

  師:你能就此歸納出二元一次方程組的圖象解法的一般步驟嗎?

  生:先將二元一次方程組中的方程化成相應(yīng)的一次函數(shù),然后畫出一次函數(shù)的圖象,找出它們的交點(diǎn)坐標(biāo),就可以得出二元一次方程組的解。

  師:非常好!我們可以用12個(gè)字的口訣來(lái)記住剛才同學(xué)的步驟:變函數(shù),畫圖象,找交點(diǎn),寫結(jié)論。

  師:接下來(lái)請(qǐng)同學(xué)們?cè)趯W(xué)案上的鞏固強(qiáng)化欄內(nèi)利用圖象解法求出你心里埋你所喜歡的二元一次方程組的解。

  生:(各自動(dòng)手操作,教師展示學(xué)生求解過(guò)程)

  師:觀察你作的圖象,你有什么發(fā)現(xiàn)嗎?

  生:我發(fā)現(xiàn)有些一次函數(shù)圖象的交點(diǎn)比較容易看出來(lái),而有些一次函數(shù)圖象的交點(diǎn)不容易看出來(lái)是多少。

  師:是的,所以在這里老師需要說(shuō)明的是我們用圖象法求解一元二次方程組的解得到的是近似解。

  師:請(qǐng)大家比較一下,二元一次方程組的圖象解法和我們以前學(xué)過(guò)的代數(shù)解法——代入消元法、加減消元法相比,那種方法簡(jiǎn)單一些?

  生:代入消元法、加減消元法簡(jiǎn)單。

  師:二元一次方程組的圖象解法既不比代數(shù)解法簡(jiǎn)單,且得到的解又是近似的,為什么我們還要學(xué)習(xí)這種解法呢?原因有以下幾個(gè)方面:一是要讓我們學(xué)會(huì)從多種角度思考問(wèn)題,用多種方法解決問(wèn)題;二是說(shuō)明了“數(shù)”與“形”存在著這樣或那樣的密切聯(lián)系,有時(shí)我們要從“數(shù)”的角度去考慮“形”的問(wèn)題,有時(shí)我們又要從“形”的角度去考慮“數(shù)”的問(wèn)題,這里是從“形”的角度來(lái)考慮“數(shù)”的問(wèn)題;三是為了以后進(jìn)一步學(xué)習(xí)的需要。

  師:看來(lái)大家都很愛動(dòng)腦筋,那么接下來(lái)我們將例題加以變化。

  六、例題變式

  題目:用圖象法求解二元一次方程組時(shí),兩條直線相交于點(diǎn)(2,-4),求一次函數(shù)的關(guān)系式。

  師:請(qǐng)一位同學(xué)來(lái)分析一下。

  生:由兩條直線的交點(diǎn)坐標(biāo)(2,-4)可知,二元一次方程組的解就是,把代入到二元一次方程組中,可得:,解得,所以一次函數(shù)的關(guān)系式為。

  師:非常好!

  七、感悟歸納

  師:再請(qǐng)同學(xué)們思考,如果二元一次方程組轉(zhuǎn)化成的一次函數(shù)的圖象沒有交點(diǎn),那么所對(duì)應(yīng)的二元一次方程組的解是什么呢?

  生:我想如果二元一次方程組轉(zhuǎn)化成的一次函數(shù)的圖象沒有交點(diǎn),那么所對(duì)應(yīng)的二元一次方程組應(yīng)該無(wú)解。

  八、拓寬提升

  題目:不畫函數(shù)的圖象,判斷下列兩條直線是否有交點(diǎn)?它們的位置關(guān)系如何?每組一次函數(shù)中的有什么關(guān)系?

  (1)與;

  (2)與

  師:你會(huì)怎樣分析這道題?

  生:我們只要求解一下由這兩個(gè)一次函數(shù)所組成的二元一次方程組的解的情況就可以判斷兩條直線的位置關(guān)系。如果方程組有解,那么相應(yīng)的兩條直線就是相交,如果方程組無(wú)解,那么相應(yīng)的兩條直線就是平行的位置關(guān)系。

  師:很好!抽象成一般結(jié)論怎樣敘述?

  生:對(duì)于直線與,當(dāng)時(shí),兩直線平行;當(dāng)時(shí),兩直線相交。

  九、例題再探

  題目:利用一次函數(shù)的圖象解二元一次方程組

  問(wèn):(1)這兩條直線有什么特殊的位置關(guān)系?

  (2)這兩個(gè)一次函數(shù)的有何特殊的關(guān)系?

  (3)由此,你能得出怎樣的結(jié)論?

  師:哪位同學(xué)來(lái)嘗試一下?

  生:(1)這兩條直線是垂直的位置關(guān)系;

  (2)這兩個(gè)一次函數(shù)的相乘的結(jié)果等于-1;

  (3)仿照剛才的結(jié)論,我得出的結(jié)論是:對(duì)于直線與,當(dāng)時(shí),兩直線垂直。

  師:太棒了!那下面的這一題你會(huì)做嗎?

  題目:已知直線和直線

  (1)若,求的值;

  (2)若,求垂足的坐標(biāo)。

  師:誰(shuí)來(lái)試一下?

  生:由前面的結(jié)論我們可以得出,如果,則,解得:;如果,則,解得,將代入二元一次方程組,可得,求出方程組的解就可以得出垂足的坐標(biāo)。

  十、學(xué)會(huì)創(chuàng)新

  師:請(qǐng)你根據(jù)這節(jié)課中的例題(或習(xí)題)在學(xué)案中編(或出)一道題?凑l(shuí)出的題新穎、精妙!

  生:(暢所欲言,踴躍嘗試)

  十一、小結(jié)與思考

  師:(1)這節(jié)課你學(xué)到了什么?

  (2)你還存在哪些疑問(wèn)?

  生:(分組討論,代表發(fā)言總結(jié))

  【設(shè)計(jì)說(shuō)明】

  本節(jié)課的兩個(gè)知識(shí)點(diǎn):二元一次方程和一次函數(shù)的關(guān)系,二元一次方程組的圖象解法對(duì)于學(xué)生來(lái)說(shuō)都是難點(diǎn)。就本節(jié)課而言,前者較為重要,后者難度較大。確定本節(jié)課的重點(diǎn)為前者,是因?yàn)閷W(xué)生必須首先理解二元一次方程和一次函數(shù)在數(shù)與形兩方面的聯(lián)系,在此基礎(chǔ)上才能解決好后面的難點(diǎn)。在重難點(diǎn)的處理上,為了解決學(xué)生對(duì)重點(diǎn)的理解,用一組二元一次方程組串起一節(jié)課,加以變式,既使得學(xué)生理解了重點(diǎn)內(nèi)容,又為后面的難點(diǎn)突破留下了一定的時(shí)間和空間。本節(jié)課的教學(xué),主要以問(wèn)題為線索,注重引導(dǎo)學(xué)生仔細(xì)觀察、獨(dú)立思考、認(rèn)真操作、分組討論、合作交流、師生互動(dòng),這對(duì)本節(jié)課的重難點(diǎn)的突破還是有效的,同時(shí)也體現(xiàn)了新課改提倡的學(xué)生的“自主、合作、探究”的學(xué)習(xí)方式的培養(yǎng)。另外,對(duì)利用二元一次方程組的解判斷直線的位置關(guān)系作為補(bǔ)充,滲透數(shù)形結(jié)合思想,也對(duì)教學(xué)目標(biāo)中的情感態(tài)度和價(jià)值觀的又一方面體現(xiàn)。

  教學(xué)反思

  這節(jié)課以“回顧、先思”為先導(dǎo),以“操作、思考”為手段,以“數(shù)、形結(jié)合”為要求,以“引導(dǎo)探究,變式拓寬”為主線,從舊知引入,自然過(guò)渡、不落痕跡。首先提出學(xué)生所熟知的二元一次方程并討論其解的情況,為后面探究二元一次方程與一次函數(shù)之間的關(guān)系作了必要的準(zhǔn)備,結(jié)構(gòu)安排自然、緊湊。在操作中,提出問(wèn)題、深化認(rèn)識(shí)。一切知識(shí)來(lái)自于實(shí)踐。只有實(shí)踐,才能發(fā)現(xiàn)問(wèn)題、提出問(wèn)題;只有實(shí)踐,才能把握知識(shí)、深化認(rèn)識(shí)。先讓學(xué)生畫出一次函數(shù)的圖象,在畫圖的過(guò)程中發(fā)現(xiàn):“以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖象上!痹趹(yīng)用結(jié)論探索一元二次方程組的圖象解法時(shí),也是在操作中來(lái)發(fā)現(xiàn)問(wèn)題。這樣,就給了學(xué)生充分體驗(yàn)、自主探索知識(shí)的機(jī)會(huì);使他們?cè)谧灾魈剿、合作交流中找到了快?lè),深化了認(rèn)識(shí)。以能力培養(yǎng)為核心,引導(dǎo)探究為主線,數(shù)、形結(jié)合為要求。能力培養(yǎng),特別是創(chuàng)新能力的培養(yǎng)是新課程關(guān)注的焦點(diǎn)。能力培養(yǎng)是以自主探究為平臺(tái)!白灾鳌辈皇且槐P散沙,“探究”不是漫無(wú)邊際。要提高探究的質(zhì)量和效益必須在教師的引導(dǎo)下進(jìn)行。為達(dá)到這一目的,教案中設(shè)計(jì)了“探究導(dǎo)學(xué)”、“例題變式”、“例題再探”、“學(xué)會(huì)創(chuàng)新”和“拓展提升”。新課程理念指出:教師是課程的研究者和開發(fā)者。這就要求我們:在新課程標(biāo)準(zhǔn)的指導(dǎo)下,認(rèn)真研究教材,體會(huì)教材的編寫意圖。在此基礎(chǔ)上,設(shè)計(jì)出既體現(xiàn)課程精神,又適合本班學(xué)生實(shí)際的教學(xué)案例。本節(jié)課前半部分時(shí)間有些慢,后半部分例題再探和學(xué)會(huì)創(chuàng)新時(shí)間不夠。建議有針對(duì)性的學(xué)生板演多一點(diǎn),進(jìn)一步加強(qiáng)雙基的落實(shí)。

  【同伴點(diǎn)評(píng)】

  本節(jié)課教師創(chuàng)設(shè)問(wèn)題情境,引導(dǎo)學(xué)生觀察、思考、操作、探究、合作交流。問(wèn)題的設(shè)計(jì)層層遞進(jìn),通過(guò)問(wèn)題的逐一解決,師生最終形成共識(shí),達(dá)到了揭示二元一次方程組與一次函數(shù)的圖象關(guān)系的目的。(李曉紅)

  在例題教學(xué)及學(xué)生動(dòng)手嘗試時(shí),教師在學(xué)生大膽嘗試之后給出解題過(guò)程,強(qiáng)調(diào)了解題的規(guī)范性,有利于培養(yǎng)學(xué)生的嚴(yán)謹(jǐn)認(rèn)真的學(xué)習(xí)態(tài)度。同時(shí)強(qiáng)調(diào)了由于二元一次方程組的圖象解法得到的解往往是近似的,因此必須檢驗(yàn)。教師對(duì)學(xué)習(xí)二元一次方程組的圖象解法的必要性的解釋,是非常有必要的,這一解釋解決了學(xué)生的疑惑,同時(shí)也滲透了數(shù)形結(jié)合思想,也是教學(xué)目標(biāo)中的情感態(tài)度和價(jià)值觀的體現(xiàn)。對(duì)于這一解釋,相當(dāng)一部分教師在這一節(jié)課中并沒有很好解決。這一處理方法值得他人借鑒。(丁葉謙)

  本節(jié)課老師準(zhǔn)備充分,教學(xué)環(huán)節(jié)緊緊相扣。授課老師充分體現(xiàn)了課題:“先思后導(dǎo),變式拓寬教學(xué)設(shè)計(jì)”的精神,不斷地創(chuàng)設(shè)問(wèn)題情境,引導(dǎo)學(xué)生學(xué)習(xí)新知,在探索二元一次方程組的圖象解法時(shí)給了學(xué)生充分體驗(yàn)、自主探索知識(shí)的機(jī)會(huì),使他們?cè)谧灾魈剿、合作交流中找到了快?lè),深化了認(rèn)識(shí)。同時(shí)對(duì)例題連續(xù)的再利用,不斷變化,讓學(xué)生在變式中不斷豐富對(duì)二元一次方程組圖象解法的認(rèn)識(shí),充分認(rèn)識(shí)二元一次方程組圖象解法的實(shí)用性,學(xué)會(huì)創(chuàng)新環(huán)節(jié)的設(shè)計(jì)更是極大地調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。教師教態(tài)親切,語(yǔ)言生動(dòng),娓娓道來(lái)。

二元一次方程教案 篇13

  一、教學(xué)目標(biāo)

  1、通過(guò)與一元一次方程的比較,能說(shuō)出二元一次方程的概念,并會(huì)辨別一個(gè)方程是不是二元一次方程;

  2、通過(guò)探索交流,會(huì)辨別一個(gè)解是不是二元一次方程的解,能寫出給定的二元一次方程的解,了解方程解的不唯一性;

  3、會(huì)將一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式。

  過(guò)程與方法目標(biāo):

  經(jīng)歷觀察、比較、猜想、驗(yàn)證等數(shù)學(xué)學(xué)習(xí)活動(dòng),培養(yǎng)分析問(wèn)題的能力和數(shù)學(xué)說(shuō)理能力;

  情感與態(tài)度目標(biāo)

  1、通過(guò)與一元一次方程的類比,探究二元一次方程及其解的概念,進(jìn)一步培養(yǎng)運(yùn)用類比轉(zhuǎn)化的思想解決問(wèn)題的能力;

  2、通過(guò)對(duì)實(shí)際問(wèn)題的分析,培養(yǎng)關(guān)注生活,進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型,培養(yǎng)良好的數(shù)學(xué)應(yīng)用意識(shí)。

  二、重點(diǎn)、難點(diǎn)

  重點(diǎn):二元一次方程的概念及二元一次方程的解的概念。

  難點(diǎn)

  1、了解二元一次方程的解的不唯一性和相關(guān)性。即了解二元一次方程的解有無(wú)數(shù)個(gè),但不是任意的兩個(gè)數(shù)是它的解。

  2、把一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式,其實(shí)質(zhì)是解一個(gè)含有字母系數(shù)的方程。

  三、教學(xué)方法與教學(xué)手段

  1、 通過(guò)創(chuàng)設(shè)問(wèn)題情境,讓學(xué)生在尋求問(wèn)題解決的過(guò)程中認(rèn)識(shí)二元一次方程,了解二元一次方程的特點(diǎn),體會(huì)到二元一次方程的引入是解決實(shí)際問(wèn)題的需要。

  2、 通過(guò)觀察、思考、交流等活動(dòng),激發(fā)學(xué)習(xí)情緒,營(yíng)造學(xué)習(xí)氣氛,給學(xué)生一定的時(shí)間和空間,自主探討,了解二元一次方程的解的不唯一性和相關(guān)性。

  3、 通過(guò)學(xué)練結(jié)合,以游戲的形式讓學(xué)生及時(shí)鞏固所學(xué)知識(shí)。

  四、教學(xué)過(guò)程

  創(chuàng)設(shè)情境 導(dǎo)入新課

  1、一個(gè)數(shù)的3倍比這個(gè)數(shù)大6,這個(gè)數(shù)是多少?

  2、寫有數(shù)字5的黃卡和寫有數(shù)字2的藍(lán)卡若干張,問(wèn)黃卡和藍(lán)卡各取幾張,才能使取到的卡片上的數(shù)字之和為22?

  思考:這個(gè)問(wèn)題中,有幾個(gè)未知數(shù)?能列一元一次方程求解嗎?如果設(shè)黃卡取x張,藍(lán)卡取y張,你能列出方程嗎?

  3、在高速公路上,一輛轎車行駛2時(shí)的路程比一輛卡車行駛3時(shí)的路程還多20千米。如果設(shè)轎車的速度是a千米/時(shí),卡車的速度是b千米/時(shí),你能列出怎樣的方程?

  師生互動(dòng) 探索新知

  1、 發(fā)現(xiàn)新知

  引導(dǎo)學(xué)生觀察所列的方程: 這兩個(gè)方程有哪些共同特征?這些特征與一元一次方程比較,哪些是相同的,哪些是不同的?你能給它們?nèi)(gè)名字嗎?

  根據(jù)它們的共同特征,你認(rèn)為怎樣的方程叫做二元一次方程? (二元一次方程的定義:含有兩個(gè)未知數(shù),且含有未知數(shù)的項(xiàng)的次數(shù)都是一次的方程叫做二元一次方程。)

  2、 鞏固新知

  判斷下列各式是不是二元一次方程(1) (2) (3) (4)

  3、師生互動(dòng) 再探新知

  (1)什么是方程的解?(使方程兩邊的值相等的未知數(shù)的值,叫做方程的解。)

  (2)你能給二元一次方程的解下一個(gè)定義嗎?(使二元一次方程兩邊的值相等的一對(duì)未知數(shù)的值,叫做二元一次方程的一個(gè)解。)

  若未知數(shù)設(shè)為,記做 ,若未知數(shù)設(shè)為,記做

  4、 檢驗(yàn)新知

  (1)檢驗(yàn)下列各組數(shù)是不是方程 的解:(學(xué)生感悟二元一次方程解的不唯一性)

  (2)你能寫出方程x-y=1的一個(gè)解嗎?(再一次讓學(xué)生感悟二元一次方程的解的不唯一性)

  5、自我挑戰(zhàn) 三探新知

  有3張寫有相同數(shù)字的藍(lán)卡和2張寫有相同數(shù)字的黃卡,這五張卡片上的數(shù)字之和為10。設(shè)藍(lán)卡上的數(shù)字為x ,黃卡上的數(shù)字為y ,根據(jù)題意列方程。

  請(qǐng)找出這個(gè)方程的一個(gè)解,并寫出你得到這個(gè)解的過(guò)程。

  學(xué)生在解二元一次方程的過(guò)程中體驗(yàn)和了解二元一次方程解的不唯一性。

  五、 總結(jié)

  比較一元一次方程和二元一次方程的相同點(diǎn)和不同點(diǎn)

  相同點(diǎn): 方程兩邊都是整式,含有未知數(shù)的項(xiàng)的次數(shù)都是一次。

  如果一個(gè)方程含有兩個(gè)未知數(shù),并且所含未知項(xiàng)都為1次方,那么這個(gè)整式方程就叫做二元一次方程,有無(wú)窮個(gè)解,若加條件限定有有限個(gè)解。

二元一次方程教案 篇14

  教學(xué)目標(biāo):

  1使學(xué)生會(huì)借助二元一次方程組解決簡(jiǎn)單的實(shí)際問(wèn)題,讓學(xué)生再次體會(huì)二元一次方程組與現(xiàn)實(shí)生活的聯(lián)系和作用

  2通過(guò)應(yīng)用題教學(xué)使學(xué)生進(jìn)一步使用代數(shù)中的方程去反映現(xiàn)實(shí)世界中等量關(guān)系,體會(huì)代數(shù)方法的優(yōu)越性

  3體會(huì)列方程組比列一元一次方程容易

  4進(jìn)一步培養(yǎng)學(xué)生化實(shí)際問(wèn)題為數(shù)學(xué)問(wèn)題的能力和分析問(wèn)題,解決問(wèn)題的能力

  重點(diǎn)與難點(diǎn):

  重點(diǎn):能根據(jù)題意列二元一次方程組;根據(jù)題意找出等量關(guān)系;

  難點(diǎn):正確發(fā)找出問(wèn)題中的兩個(gè)等量關(guān)系

  課前自主學(xué)習(xí)

  1.列方程組解應(yīng)用題是把“未知”轉(zhuǎn)化為“已知”的重要方法,它的關(guān)鍵是把已知量和未知量聯(lián)系起來(lái),找出題目中的

  2.一般來(lái)說(shuō),有幾個(gè)未知量就必須列幾個(gè)方程,所列方程必須滿足:

  (1)方程兩邊表示的是量

  (2)同類量的單位要

  (3)方程兩邊的數(shù)值要相符。

  3.列方程組解應(yīng)用題要注意檢驗(yàn)和作答,檢驗(yàn)不僅要求所得的解是否( ),更重要的是要檢驗(yàn)所求得的結(jié)果是否( )

  4.一個(gè)籠中裝有雞兔若干只,從上面看共42個(gè)頭,從下面看共有132只腳,則雞有( ),兔有( )

  新課探究

  看一看

  問(wèn)題:

  1題中有哪些已知量?哪些未知量?

  2題中等量關(guān)系有哪些?

  3如何解這個(gè)應(yīng)用題?

  本題的等量關(guān)系是(1)

  (2)

  解:設(shè)平均每只母牛和每只小牛1天各需用飼料為xkg和ykg

  根據(jù)題意列方程,得

  解這個(gè)方程組得

  答:每只母牛和每只小牛1天各需用飼料為( )和( ),飼料員李大叔估計(jì)每天母牛需用飼料18—20千克,每只小牛一天需用7到8千克與計(jì)算出入。(“有”或“沒有”)

  練一練:

  1、某所中學(xué)現(xiàn)在有學(xué)生4200人,計(jì)劃一年后初中在樣生增加8%,高中在校生增加11%,這樣全校學(xué)生將增加10%,這所學(xué),F(xiàn)在的初中在校生和高中在校生人數(shù)各是多少人?

  2、有大小兩輛貨車,兩輛大車與3輛小車一次可以支貨15。50噸,5輛大車與6輛小車一次可以支貨35噸,求3輛大車與5輛小車一次可以運(yùn)貨多少噸?

  3、某工廠第一車間比第二車間人數(shù)的少30人,如果從第二車間調(diào)出10人到第一車間,則第一車間的人數(shù)是第二車間的,問(wèn)這兩車間原有多少人?

  4、某運(yùn)輸隊(duì)送一批貨物,計(jì)劃20天完成,實(shí)際每天多運(yùn)送5噸,結(jié)果不但提前2天完成任務(wù)并多運(yùn)了10噸,求這批貨物有多少噸?原計(jì)劃每天運(yùn)輸多少噸?

  小結(jié)

  用方程組解應(yīng)用題的一般步驟是什么?

  8.3實(shí)際問(wèn)題與二元一次方程組(2)

  教學(xué)目標(biāo):

  1、經(jīng)歷用方程組解決實(shí)際問(wèn)題的過(guò)程,體會(huì)方程組是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型;

  2、能夠找出實(shí)際問(wèn)題中的已知數(shù)和未知數(shù),分析它們之間的數(shù)量關(guān)系,列出方程組;

  3、學(xué)會(huì)開放性地尋求設(shè)計(jì)方案,培養(yǎng)分析問(wèn)題,解決問(wèn)題的能力

  重點(diǎn)與難點(diǎn):

  重點(diǎn):能根據(jù)題意列二元一次方程組;根據(jù)題意找出等量關(guān)系;

  難點(diǎn):正確發(fā)找出問(wèn)題中的兩個(gè)等量關(guān)系

  課前自主學(xué)習(xí)

  1.甲乙兩人的年收入之比為4:3,支出之比為8:5,一年間兩人各存了5000元(兩人剩余的錢都存入了銀行),則甲乙兩人的年收入分別為元和元。

  2.在一堆球中,籃球與排球之比為贊助單位又送來(lái)籃球隊(duì)10個(gè)排球10個(gè),這時(shí)籃球與排球的數(shù)量之比為27:40,則原有籃球個(gè),排球個(gè)。

  3.現(xiàn)在長(zhǎng)為18米的鋼材,要據(jù)成10段,每段長(zhǎng)只能為1米或2米,則這個(gè)問(wèn)題中的等量關(guān)系是(1)1米的段數(shù)+=10(2)1米的鋼材總長(zhǎng)+=18

二元一次方程教案 篇15

  【教學(xué)目標(biāo)】

  知識(shí)目標(biāo): 1、通過(guò)觀察,歸納二元一次方程的概念 ,會(huì)把二元一次方程化為用一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式.

  2、二元一次方程解的不定性和相關(guān)性,即二元一次方程的解有無(wú)數(shù)個(gè),但又不是任意兩個(gè)數(shù)是它的解。

  過(guò)程與方法:通過(guò)與一元一次方程的比較,加強(qiáng)學(xué)生的類比的思想方法。

  情感態(tài)度與價(jià)值觀:通過(guò)“合作學(xué)習(xí)”,使學(xué)生認(rèn)識(shí)數(shù)學(xué)是根據(jù)實(shí)際的需要而產(chǎn)生發(fā)展的觀點(diǎn)。

  【教學(xué)重點(diǎn)、難點(diǎn)】

  重點(diǎn):二元一次方程的意義及二元一次方程的解的概念。

  難點(diǎn):把一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式,其實(shí)質(zhì)是解一個(gè)含有字母系數(shù)的方程。

  【教學(xué)過(guò)程】

  一、 復(fù)習(xí)引入:

 。1) 方程的概念;一元一次方程的概念;什么是方程的解?一元一次方程的解如何表示?

 。2) 合作學(xué)習(xí):

 、傩〖t到郵局寄掛號(hào)信,需要郵資3元8角。小紅有票額為6角和8角的郵票若干張,問(wèn)各需要多少?gòu)堖@兩種面額的郵票?

  這個(gè)問(wèn)題中有幾個(gè)未知數(shù),能列一元一次方程求解嗎?

  如果設(shè)需要票額為6角的郵票x張,需要票額為8角的郵票y張,你能列出方程嗎?

 、谠诟咚俟飞希惠v轎車行駛2時(shí)的路程比一輛卡車行駛3時(shí)的路程還多20千米,如果設(shè)轎車的速度是a千米/小時(shí),卡車的速度是b千米/小時(shí),你能列出方程嗎?

  二、 新課教學(xué)

  這就是我們今天要學(xué)習(xí)的4、1二元一次方程(板書課題)

 。1) 觀察上述兩個(gè)方程,歸納特點(diǎn)

 。2) 討論選擇正確概念

 、 含有兩個(gè)未知數(shù)的方程叫二元一次方程。

  ② 含有兩個(gè)未知數(shù),且含有未知數(shù)的項(xiàng)的次數(shù)都是1次的方程叫二元一次方程。

 。3) 做一做P86——1,2

  (4) 例:已知方程3x+2y=10

 、 用關(guān)于x的代數(shù)式表示y (分析:只要把方程3x+2y=10看作未知數(shù)是y的一元一次方程,解關(guān)于y的方程)

 、 求當(dāng)x=-2,0,3時(shí),對(duì)應(yīng)的y的值

 。ㄌ釂(wèn):把x=-2,y=8代入方程3x+2y=10,能否使其左右兩邊相等?

  回憶方程解的概念,得出x=-2,y=8是二元一次方程3x+2y=10的一個(gè)解,記作 。

  同理試寫出該方程的兩個(gè)解(注意寫法格式)

  思考:方程3x+2y=10的解有多少個(gè)?

  師歸納:二元一次方程解具不定性和相關(guān)性

  (5) 練習(xí):P88——課內(nèi)練習(xí)1,2

 。6) 補(bǔ)充練習(xí):P89---作業(yè)題4(說(shuō)明:方程的解須是正整數(shù))

  已知 ,是方程2x+3y=5的一個(gè)解,那么由此可知道些什么?

 。ㄕf(shuō)明:1.本例是根據(jù)教科書P89---B組第5題改編。原題要求a的值,但學(xué)

  生常常有困難,因此這里把原題改為開放式命題,看起來(lái)似乎比原

  題要求高了,其實(shí)有利于各類學(xué)生參與并尋求結(jié)論。

  三、 課堂小結(jié):

  二元一次方程的意義及二元一次方程的解的概念(注意書寫格式)

  二元一次方程解的不定性和相關(guān)性

  會(huì)把二元一次方程化為用一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式

  四、 作業(yè) :

  課堂作業(yè)本

二元一次方程教案(通用15篇) 相關(guān)內(nèi)容:
  • 二元一次方程與一次函數(shù)(通用4篇)

    北師大版八年級(jí)上第七章二元一次方程組第六節(jié) 202頁(yè)----204頁(yè)《二元一次方程與一次函數(shù)》教學(xué)設(shè)計(jì)鹿泉市上莊鎮(zhèn)中學(xué) 張亞茹教學(xué)目標(biāo)1.知識(shí)與能力目標(biāo)(1)二元一次方程和一次函數(shù)的關(guān)系。(2)二元一次方程組的圖象解法。...

  • 8.3 再探實(shí)際問(wèn)題與二元一次方程(3)

    8.3 再探實(shí)際問(wèn)題與二元一次方程(3)教學(xué)目標(biāo)1、進(jìn)一步經(jīng)歷用方程組解決實(shí)際問(wèn)題的過(guò)程,體會(huì)方程組是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型;2、會(huì)用列表的方式分析問(wèn)題中所蘊(yùn)涵的數(shù)量關(guān)系,列出二元一次方程組;3、培養(yǎng)分析問(wèn)題、解決問(wèn)題的能力...

  • 8.3 再探實(shí)際問(wèn)題與二元一次方程(2)

    8.3 再探實(shí)際問(wèn)題與二元一次方程(2)教學(xué)目標(biāo)1、經(jīng)歷用方程組解決實(shí)際問(wèn)題的過(guò)程,體會(huì)方程組是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型;2、能夠找出實(shí)際問(wèn)題中的已知數(shù)和未知數(shù),分析它們之間的數(shù)量關(guān)系,列出方程組;3、學(xué)會(huì)開放性地尋求設(shè)計(jì)方案...

  • 8.3 再探實(shí)際問(wèn)題與二元一次方程(1)

    8.3 再探實(shí)際問(wèn)題與二元一次方程(1)教學(xué)目標(biāo)1、經(jīng)歷用方程組解決實(shí)際問(wèn)題的過(guò)程,體會(huì)方程組是刻畫現(xiàn)實(shí)世界中含有多個(gè)未知數(shù)的問(wèn)題的有效數(shù)學(xué)模型;2、能夠找出實(shí)際問(wèn)題中的已知數(shù)和未知數(shù),分析它們之間的數(shù)量關(guān)系,列出方程組;3、學(xué)...

  • 二元一次方程與一次函數(shù)

    二元一次方程與一次函數(shù)...

  • 數(shù)學(xué)教案-由一個(gè)二元一次方程和一個(gè)二元二次方程組成的方程組

    第一課時(shí) 一、教學(xué)目標(biāo) 1.使學(xué)生知道二元二次方程的概念、二元二次方程組的概念; 2.使學(xué)生掌握由代入法解由一個(gè)二元一次方程和一個(gè)二元二次方程組成的方程組. 3. 通過(guò)二元二次方程組解法的教學(xué),向?qū)W生滲透“消元”、“降次”的數(shù)學(xué)思想...

  • 數(shù)學(xué)教案-由一個(gè)二元二次方程和一個(gè)可以分解為兩個(gè)二元一次方程的方

    第一課時(shí) 一、教學(xué)目標(biāo) 1.使學(xué)生掌握由一個(gè)二元二次方程和一個(gè)可以分解為兩個(gè)二元一次方程組成的方程組的解法. 2. 通過(guò)例題的分析講解,進(jìn)一步提高學(xué)生的分析問(wèn)題和解決問(wèn)題的能力; 3. 通過(guò)一個(gè)二元二次方程解法的分析,使學(xué)生進(jìn)一步體會(huì)...

  • 由一個(gè)二元二次方程和一個(gè)可以分解為兩個(gè)二元一次方程的方程組成的方程組

    第一課時(shí) 一、教學(xué)目標(biāo) 1.使學(xué)生掌握由一個(gè)二元二次方程和一個(gè)可以分解為兩個(gè)二元一次方程組成的方程組的解法. 2. 通過(guò)例題的分析講解,進(jìn)一步提高學(xué)生的分析問(wèn)題和解決問(wèn)題的能力; 3. 通過(guò)一個(gè)二元二次方程解法的分析,使學(xué)生進(jìn)一步體會(huì)...

  • 由一個(gè)二元一次方程和一個(gè)二元二次方程組成的方程組

    第一課時(shí) 一、教學(xué)目標(biāo) 1.使學(xué)生知道二元二次方程的概念、二元二次方程組的概念; 2.使學(xué)生掌握由代入法解. 3. 通過(guò)二元二次方程組解法的教學(xué),向?qū)W生滲透“消元”、“降次”的數(shù)學(xué)思想方法,從而提高分析問(wèn)題和解決問(wèn)題的能力; 4. 通過(guò)...

  • 由一個(gè)二元二次方程和一個(gè)可以分解為兩個(gè)二元一次方程的方程組成的方程組

    第一課時(shí) 一、教學(xué)目標(biāo) 1.使學(xué)生掌握由一個(gè)二元二次方程和一個(gè)可以分解為兩個(gè)二元一次方程組成的方程組的解法. 2. 通過(guò)例題的分析講解,進(jìn)一步提高學(xué)生的分析問(wèn)題和解決問(wèn)題的能力; 3. 通過(guò)一個(gè)二元二次方程解法的分析,使學(xué)生進(jìn)一步體會(huì)...

  • 由一個(gè)二元一次方程和一個(gè)二元二次方程組成的方程組

    第一課時(shí) 一、教學(xué)目標(biāo) 1.使學(xué)生知道二元二次方程的概念、二元二次方程組的概念; 2.使學(xué)生掌握由代入法解. 3. 通過(guò)二元二次方程組解法的教學(xué),向?qū)W生滲透“消元”、“降次”的數(shù)學(xué)思想方法,從而提高分析問(wèn)題和解決問(wèn)題的能力; 4. 通過(guò)...

  • 由一個(gè)二元二次方程和一個(gè)可以分解為兩個(gè)二元一次方程的方程組成的方程組

    第一課時(shí) 一、教學(xué)目標(biāo) 1.使學(xué)生掌握由一個(gè)二元二次方程和一個(gè)可以分解為兩個(gè)二元一次方程組成的方程組的解法. 2. 通過(guò)例題的分析講解,進(jìn)一步提高學(xué)生的分析問(wèn)題和解決問(wèn)題的能力; 3. 通過(guò)一個(gè)二元二次方程解法的分析,使學(xué)生進(jìn)一步體會(huì)...

  • 由一個(gè)二元一次方程和一個(gè)二元二次方程組成的方程組

    第一課時(shí) 一、教學(xué)目標(biāo) 1.使學(xué)生知道二元二次方程的概念、二元二次方程組的概念; 2.使學(xué)生掌握由代入法解. 3. 通過(guò)二元二次方程組解法的教學(xué),向?qū)W生滲透“消元”、“降次”的數(shù)學(xué)思想方法,從而提高分析問(wèn)題和解決問(wèn)題的能力; 4. 通過(guò)...

  • 由一個(gè)二元二次方程和一個(gè)可以分解為兩個(gè)二元一次方程的方程組成的方程組

    第一課時(shí) 一、教學(xué)目標(biāo) 1.使學(xué)生掌握由一個(gè)二元二次方程和一個(gè)可以分解為兩個(gè)二元一次方程組成的方程組的解法. 2. 通過(guò)例題的分析講解,進(jìn)一步提高學(xué)生的分析問(wèn)題和解決問(wèn)題的能力; 3. 通過(guò)一個(gè)二元二次方程解法的分析,使學(xué)生進(jìn)一步體會(huì)...

  • 由一個(gè)二元一次方程和一個(gè)二元二次方程組成的方程組

    第一課時(shí) 一、教學(xué)目標(biāo) 1.使學(xué)生知道二元二次方程的概念、二元二次方程組的概念; 2.使學(xué)生掌握由代入法解. 3. 通過(guò)二元二次方程組解法的教學(xué),向?qū)W生滲透“消元”、“降次”的數(shù)學(xué)思想方法,從而提高分析問(wèn)題和解決問(wèn)題的能力; 4. 通過(guò)...

  • 教案大全