最近中文字幕完整版高清,宅男宅女精品国产av天堂,亚洲欧美日韩综合一区二区,最新色国产精品精品视频,中文字幕日韩欧美就去鲁

首頁 > 教案下載 > 教案大全 > 高一數(shù)學(xué)教案集錦(精選15篇)

高一數(shù)學(xué)教案集錦

發(fā)布時(shí)間:2023-08-19

高一數(shù)學(xué)教案集錦(精選15篇)

高一數(shù)學(xué)教案集錦 篇1

  重點(diǎn)

  理解角與角的相關(guān)概念;掌握角的度量單位以及單位之間的換算.

  難點(diǎn)

  理解角與角的相關(guān)概念;掌握角的度量單位以及單位之間的換算.

  一、創(chuàng)設(shè)情境,導(dǎo)入新知

  展示實(shí)物:時(shí)鐘,圓規(guī),折扇等.

  (1)觀察實(shí)物與圖片,你發(fā)現(xiàn)其中有什么相同圖形嗎?學(xué)生回答,教師點(diǎn)評(píng),注意鼓勵(lì)學(xué)生.

  (2)你能把觀察得到的圖形畫在本子上或黑板上嗎?這是一些什么圖形?思考,動(dòng)手畫一畫.

  (3)從黑板上這些不同的圖形中,你能歸納出它們的共同特點(diǎn)嗎?

  學(xué)生相互交流并回答,挖掘和利用現(xiàn)實(shí)生活中與角相關(guān)的背景,讓學(xué)生在現(xiàn)實(shí)背景中認(rèn)識(shí)角,培養(yǎng)學(xué)生的動(dòng)手能力.引導(dǎo)學(xué)生觀察并歸納角的共同點(diǎn),進(jìn)而引入課題.

  二、自主合作,感受新知

  回顧以前學(xué)的知識(shí)、閱讀課文并結(jié)合生活實(shí)際,完成“預(yù)習(xí)導(dǎo)學(xué)”部分.

  三、師生互動(dòng),理解新知

  探究點(diǎn)一:角的概念及表示方法

  活動(dòng)一:從生活中認(rèn)識(shí)角

  我們看物體時(shí),有視角,鐘表的指針轉(zhuǎn)動(dòng)也形成角.請(qǐng)同學(xué)們看課本后回答下面問題.

  (1)角是一個(gè)幾何圖形,請(qǐng)大家說說,角是由什么圖形構(gòu)成的?(學(xué)生回答,教師點(diǎn)評(píng),注意鼓勵(lì)學(xué)生)

  (2)如果我們把角看作是一條射線繞它的端點(diǎn)旋轉(zhuǎn)圍成的圖形,那么始邊和終邊又指什么?

  教師總結(jié):角有兩個(gè)定義,一個(gè)是靜態(tài)的定義,把角看作由一點(diǎn)出發(fā)的兩條射線組成的圖形;另一個(gè)定義是動(dòng)態(tài)的,把角看作一條射線繞端點(diǎn)旋轉(zhuǎn)所形成的圖形,把開始位置的射線叫做始邊,把終止位置的射線叫做終邊.

  (3)請(qǐng)同學(xué)們說一說,我們?nèi)粘I钪,哪些地方有?(學(xué)生舉例)

  活動(dòng)二:角的表示方法

  我們?cè)鯓颖硎窘悄??qǐng)同學(xué)們看課本上說了幾種表示方法?(學(xué)生先看書,后回答)

  教師總結(jié):(1)用三個(gè)大寫字母可以表示一個(gè)角,比如∠AOB.

  練習(xí):誰能指出下列各角的頂點(diǎn)和兩條邊?

  注意:①三個(gè)字母的順序有規(guī)定,頂點(diǎn)的字母必須寫在中間.

 、陧旤c(diǎn)的字母不一定用O,角的始邊與終邊的字母也可以隨意.

  (2)當(dāng)一個(gè)頂點(diǎn)只有一個(gè)角時(shí),也可以用頂點(diǎn)的字母表示.比如,下面的角可以表示為∠O.

  練習(xí):判斷下列角可以用頂點(diǎn)的字母表示嗎?

  (3)用數(shù)字或小寫的希臘字母表示角.(注意:角中不能有角)

  練習(xí):下面表示角的方法,哪個(gè)是正確的?哪個(gè)是錯(cuò)誤的?

  探究點(diǎn)二:角的度量

  活動(dòng)三:角的度量

  (1)請(qǐng)同學(xué)們借助量角器畫出下列各角:

 、30° ②45° ③60° ④90° ⑤120° ⑥150° ⑦62° ⑧105°

  學(xué)生畫圖,教師指導(dǎo).(根據(jù)需要教師可先做示范)

  (2)任意畫一個(gè)角,用量角器測(cè)量角的大小.提問:如果這個(gè)角的度數(shù)不是整數(shù),應(yīng)該怎樣表示這個(gè)角的度數(shù)呢?引出角的度量單位是度、分、秒.

  教師總結(jié):它們之間的關(guān)系是:1°=60′,1′=60″ (強(qiáng)調(diào)度、分、秒是60進(jìn)制,不是十進(jìn)制).

  (3)還有什么單位是60進(jìn)制?

  (4)讓學(xué)生畫一個(gè)1°角,感受1°角有多大.

  四、應(yīng)用遷移,運(yùn)用新知

  1.角的定義

  例1 下列說法中,正確的是( )

  A.兩條射線組成的圖形叫做角

  B.有公共端點(diǎn)的兩條線段組成的圖形叫做角

  C.角可以看作是由一條射線繞著它的端點(diǎn)旋轉(zhuǎn)而形成的圖形

  D.角可以看作是由一條線段繞著它的端點(diǎn)旋轉(zhuǎn)而形成的圖形

  解析:A.有公共端點(diǎn)的兩條射線組成的圖形叫做角,故錯(cuò)誤;B.根據(jù)A可得B錯(cuò)誤;C.角可以看作是由一條射線繞著它的端點(diǎn)旋轉(zhuǎn)而形成的圖形,正確;D.據(jù)C可得D錯(cuò)誤.

  方法總結(jié):此題考查了角的定義,有公共端點(diǎn)的兩條不重合的射線組成的圖形叫做角.這個(gè)公共端點(diǎn)叫做角的頂點(diǎn),這兩條射線叫做角的兩條邊.

  2.角的表示方法

  例2 下列四個(gè)圖形中,能用∠1、∠AOB、∠O三種方法表示同一個(gè)角的圖形是( )

  A B C D

  解析:在角的頂點(diǎn)處有多個(gè)角時(shí),用一個(gè)字母表示這個(gè)角,這種方法是錯(cuò)誤的.所以A、C、D錯(cuò)誤.

  方法總結(jié):角的兩個(gè)基本元素中,邊是兩條射線,

  頂點(diǎn)是這兩條射線的公共端點(diǎn).

  3.判斷角的數(shù)量

  例3 如圖所示,在∠AOB的內(nèi)部有3條射線,則圖中角的個(gè)數(shù)為( )

  A.10 B.15 C.5 D.20

  解析:可以根據(jù)圖形依次數(shù)出角的個(gè)數(shù);或者根據(jù)公式求圖中角的個(gè)數(shù)是12×5×(5-1)=10.

  方法總結(jié):若從一點(diǎn)發(fā)出n條射線,則構(gòu)成12n(n-1)個(gè)角.

  4.角的度量

  例4 見課本P144例1.

  方法總結(jié):用度、分、秒表示的角度和用度表示的角度的相互轉(zhuǎn)化的過程正好相反:大單位化小單位,乘以進(jìn)率;而小單位化大單位要除以進(jìn)率.

  五、嘗試練習(xí),掌握新知

  課本P144練習(xí)第1、2題、P145練習(xí)第1、2題.

  “隨堂演練”部分.

  六、課堂小結(jié),梳理新知

  通過本節(jié)課的學(xué)習(xí),我們都學(xué)到了哪些數(shù)學(xué)知識(shí)和方法?

  本節(jié)課學(xué)習(xí)了角及角的有關(guān)概念,并會(huì)表示角;知道角的度量單位,并能進(jìn)行單位的轉(zhuǎn)換;會(huì)把角的知識(shí)與現(xiàn)實(shí)生活相聯(lián)系,用角的知識(shí)解釋生活中的一些現(xiàn)象.

  七、深化練習(xí),鞏固新知

  課本P145~146習(xí)題4.4第1~4題.

  “課時(shí)作業(yè)”部分.

高一數(shù)學(xué)教案集錦 篇2

  教學(xué)目標(biāo)

  會(huì)運(yùn)用圖象判斷單調(diào)性;理解函數(shù)的單調(diào)性,能判斷或證明一些簡(jiǎn)單函數(shù)單調(diào)性;注意必須在定義域內(nèi)或其子集內(nèi)討論函數(shù)的單調(diào)性。

  重 點(diǎn)

  函數(shù)單調(diào)性的證明及判斷。

  難 點(diǎn)

  函數(shù)單調(diào)性證明及其應(yīng)用。

  一、復(fù)習(xí)引入

  1、函數(shù)的定義域、值域、圖象、表示方法

  2、函數(shù)單調(diào)性

  (1)單調(diào)增函數(shù)

  (2)單調(diào)減函數(shù)

  (3)單調(diào)區(qū)間

  二、例題分析

  例1、畫出下列函數(shù)圖象,并寫出單調(diào)區(qū)間:

  (1) (2) (2)

  例2、求證:函數(shù) 在區(qū)間 上是單調(diào)增函數(shù)。

  例3、討論函數(shù) 的單調(diào)性,并證明你的結(jié)論。

  變(1)討論函數(shù) 的單調(diào)性,并證明你的結(jié)論

  變(2)討論函數(shù) 的單調(diào)性,并證明你的結(jié)論。

  例4、試判斷函數(shù) 在 上的單調(diào)性。

  三、隨堂練習(xí)

  1、判斷下列說法正確的是 。

  (1)若定義在 上的函數(shù) 滿足 ,則函數(shù) 是 上的單調(diào)增函數(shù);

  (2)若定義在 上的函數(shù) 滿足 ,則函數(shù) 在 上不是單調(diào)減函數(shù);

  (3)若定義在 上的函數(shù) 在區(qū)間 上是單調(diào)增函數(shù),在區(qū)間 上也是單調(diào)增函數(shù),則函數(shù) 是 上的單調(diào)增函數(shù);

  (4)若定義在 上的函數(shù) 在區(qū)間 上是單調(diào)增函數(shù),在區(qū)間 上也是單調(diào)增函數(shù),則函數(shù) 是 上的單調(diào)增函數(shù)。

  2、若一次函數(shù) 在 上是單調(diào)減函數(shù),則點(diǎn) 在直角坐標(biāo)平面的( )

  A.上半平面 B.下半平面 C.左半平面 D.右半平面

  3、函數(shù) 在 上是___ ___;函數(shù) 在 上是__ _____。

  3.下圖分別為函數(shù) 和 的圖象,求函數(shù) 和 的單調(diào)增區(qū)間。

  4、求證:函數(shù) 是定義域上的單調(diào)減函數(shù)。

  四、回顧小結(jié)

  1、函數(shù)單調(diào)性的判斷及證明。

  課后作業(yè)

  一、基礎(chǔ)題

  1、求下列函數(shù)的單調(diào)區(qū)間

  (1) (2)

  2、畫函數(shù) 的圖象,并寫出單調(diào)區(qū)間。

  二、提高題

  3、求證:函數(shù) 在 上是單調(diào)增函數(shù)。

  4、若函數(shù) ,求函數(shù) 的單調(diào)區(qū)間。

  5、若函數(shù) 在 上是增函數(shù),在 上是減函數(shù),試比較 與 的大小。

  三、能力題

  6、已知函數(shù) ,試討論函數(shù)f(x)在區(qū)間 上的單調(diào)性。

  變(1)已知函數(shù) ,試討論函數(shù)f(x)在區(qū)間 上的單調(diào)性。

高一數(shù)學(xué)教案集錦 篇3

  一、教材分析

  函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個(gè)初等數(shù)學(xué)體系之中。函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對(duì)初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個(gè)簡(jiǎn)單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對(duì)應(yīng)說”,這是對(duì)函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識(shí),也是學(xué)生認(rèn)識(shí)上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對(duì)學(xué)生今后的學(xué)習(xí)起著深刻的影響。

  本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對(duì)概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對(duì)應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。

  二、重難點(diǎn)分析

  根據(jù)對(duì)上述對(duì)教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點(diǎn),也應(yīng)該是本章的難點(diǎn)。

  三、學(xué)情分析

  1、有利因素:一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡(jiǎn)單的函數(shù),對(duì)函數(shù)已經(jīng)有了一定的感性認(rèn)識(shí);另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。

  2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個(gè)集合間對(duì)應(yīng)來描繪函數(shù)概念,是一個(gè)抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度。

  四、目標(biāo)分析

  1、理解函數(shù)的概念,會(huì)用函數(shù)的定義判斷函數(shù),會(huì)求一些最基本的函數(shù)的定義域、值域。

  2、通過對(duì)實(shí)際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識(shí)以及邏輯思維、建模等方面的能力。

  3、通過對(duì)函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。

  五、教法學(xué)法

  本節(jié)課的教學(xué)以學(xué)生為主體、教師是數(shù)學(xué)課堂活動(dòng)的組織者、引導(dǎo)者和參與者,我一方面精心設(shè)計(jì)問題情景,引導(dǎo)學(xué)生主動(dòng)探索。另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問題的提出、問題的解決為主線,始終在學(xué)生知識(shí)的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動(dòng)參與,通過不斷探究、發(fā)現(xiàn),在師生互動(dòng)、生生互動(dòng)中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動(dòng)認(rèn)知過程。

  學(xué)法方面,學(xué)生通過對(duì)新舊兩種函數(shù)定義的對(duì)比,在集合論的觀點(diǎn)下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。

高一數(shù)學(xué)教案集錦 篇4

  一、指導(dǎo)思想:

  使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。具體目標(biāo)如下。

  1。獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們?cè)诤罄m(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。

  2。提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。

  3。提高數(shù)學(xué)地提出、分析和解決問題(包括簡(jiǎn)單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。

  4。發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。

  5。提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

  6。具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。

  二、教材特點(diǎn):

  我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(a版)》,它在堅(jiān)持我國(guó)數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時(shí)代性,典型性和可接受性等到,具有如下特點(diǎn):

  1。親和力:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。

  2。問題性:以恰時(shí)恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動(dòng),培養(yǎng)問題意識(shí),孕育創(chuàng)新精神。

  3?茖W(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。

  4。時(shí)代性與應(yīng)用性:以具有時(shí)代性和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識(shí)。

  三、教法分析:

  1。選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對(duì)數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。

  2。通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。

  3。在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。

  四、學(xué)情分析:

  1、基本情況:12班共人,男生人,女生人;本班相對(duì)而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約人,后進(jìn)生約人。

  14班共人,男生人,女生人;本班相對(duì)而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約人,后進(jìn)生約人。

  2、兩個(gè)班均屬普高班,學(xué)習(xí)情況良好,但學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺性。班級(jí)存在的最大問題是計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計(jì)算能力,同時(shí)要進(jìn)一步提高其思維能力。同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),其底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭(zhēng)取每一堂課落實(shí)一個(gè)知識(shí)點(diǎn),掌握一個(gè)知識(shí)點(diǎn)。

  五、教學(xué)措施:

  1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。

  2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。

  3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。

  4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。

  5、自始至終貫徹教學(xué)四環(huán)節(jié),針對(duì)不同的教材內(nèi)容選擇不同教法。

  6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。

高一數(shù)學(xué)教案集錦 篇5

  教學(xué)目標(biāo):

  1、理解對(duì)數(shù)的概念,能夠進(jìn)行對(duì)數(shù)式與指數(shù)式的互化;

  2、滲透應(yīng)用意識(shí),培養(yǎng)歸納思維能力和邏輯推理能力,提高數(shù)學(xué)發(fā)現(xiàn)能力。

  教學(xué)重點(diǎn):

  對(duì)數(shù)的`概念

  教學(xué)過程:

  一、問題情境:

  1、(1)莊子:一尺之棰,日取其半,萬世不竭、①取5次,還有多長(zhǎng)?②取多少次,還有0、125尺?

 。2)假設(shè)20xx年我國(guó)國(guó)民生產(chǎn)總值為a億元,如果每年平均增長(zhǎng)8%,那么經(jīng)過多少年國(guó)民生產(chǎn)總值是20xx年的2倍?

  抽象出:1、=?,=0、125x=?2、=2x=?

  2、問題:已知底數(shù)和冪的值,如何求指數(shù)?你能看得出來嗎?

  二、學(xué)生活動(dòng):

  1、討論問題,探究求法、

  2、概括內(nèi)容,總結(jié)對(duì)數(shù)概念、

  3、研究指數(shù)與對(duì)數(shù)的關(guān)系、

  三、建構(gòu)數(shù)學(xué):

  1)引導(dǎo)學(xué)生自己總結(jié)并給出對(duì)數(shù)的概念、

  2)介紹對(duì)數(shù)的表示方法,底數(shù)、真數(shù)的含義、

  3)指數(shù)式與對(duì)數(shù)式的關(guān)系、

  4)常用對(duì)數(shù)與自然對(duì)數(shù)、

  探究:

  ⑴負(fù)數(shù)與零沒有對(duì)數(shù)、

 、,、

 、菍(duì)數(shù)恒等式(教材P58練習(xí)6)

  ①;②、

 、葍煞N對(duì)數(shù):

 、俪S脤(duì)數(shù):;

  ②自然對(duì)數(shù):、

 。5)底數(shù)的取值范圍為;真數(shù)的取值范圍為、

  四、數(shù)學(xué)運(yùn)用:

  1、例題:

  例1、(教材P57例1)將下列指數(shù)式改寫成對(duì)數(shù)式:

  (1)=16;(2)=;(3)=20;(4)=0、45、

  例2、(教材P57例2)將下列對(duì)數(shù)式改寫成指數(shù)式:

 。1);(2)3=—2;(3);(4)(補(bǔ)充)ln10=2、303

  例3、(教材P57例3)求下列各式的值:

 、;⑵;⑶(補(bǔ)充)、

  2、練習(xí):

  P58(練習(xí))1,2,3,4,5、

  五、回顧小結(jié):

  本節(jié)課學(xué)習(xí)了以下內(nèi)容:

 、艑(duì)數(shù)的定義;

 、浦笖(shù)式與對(duì)數(shù)式互換;

 、乔髮(duì)數(shù)式的值(利用計(jì)算器求對(duì)數(shù)值)、

  六、課外作業(yè):P63習(xí)題1,2,3,4、

高一數(shù)學(xué)教案集錦 篇6

  教學(xué)目標(biāo):

  1、掌握對(duì)數(shù)的運(yùn)算性質(zhì),并能理解推導(dǎo)這些法則的依據(jù)和過程;

  2、能較熟練地運(yùn)用法則解決問題;

  教學(xué)重點(diǎn):

  對(duì)數(shù)的運(yùn)算性質(zhì)

  教學(xué)過程:

  一、問題情境:

  1、指數(shù)冪的運(yùn)算性質(zhì);

  2、問題:對(duì)數(shù)運(yùn)算也有相應(yīng)的運(yùn)算性質(zhì)嗎?

  二、學(xué)生活動(dòng):

  1、觀察教材P59的表2—3—1,驗(yàn)證對(duì)數(shù)運(yùn)算性質(zhì)、

  2、理解對(duì)數(shù)的運(yùn)算性質(zhì)、

  3、證明對(duì)數(shù)性質(zhì)、

  三、建構(gòu)數(shù)學(xué):

  1)引導(dǎo)學(xué)生驗(yàn)證對(duì)數(shù)的運(yùn)算性質(zhì)、

  2)推導(dǎo)和證明對(duì)數(shù)運(yùn)算性質(zhì)、

  3)運(yùn)用對(duì)數(shù)運(yùn)算性質(zhì)解題、

  探究:

 、俸(jiǎn)易語言表達(dá):“積的對(duì)數(shù)=對(duì)數(shù)的和”……

  ②有時(shí)逆向運(yùn)用公式運(yùn)算:如

  ③真數(shù)的取值范圍必須是:不成立;不成立、

  ④注意:,

  四、數(shù)學(xué)運(yùn)用:

  1、例題:

  例1、(教材P60例4)求下列各式的值:

 。1);(2)125;(3)(補(bǔ)充)lg、

  例2、(教材P60例4)已知,,求下列各式的值(結(jié)果保留4位小數(shù))

  (1);(2)、

  例3、用,,表示下列各式:

  例4、計(jì)算:

  (1);(2);(3)

  2、練習(xí):

  P60(練習(xí))1,2,4,5、

  五、回顧小結(jié):

  本節(jié)課學(xué)習(xí)了以下內(nèi)容:對(duì)數(shù)的運(yùn)算法則,公式的逆向使用、

  六、課外作業(yè):

  P63習(xí)題5

  補(bǔ)充:

  1、求下列各式的值:

  (1)6—3;(2)lg5+lg2;(3)3+、

  2、用lgx,lgy,lgz表示下列各式:

 。1)lg(xyz);(2)lg;(3);(4)、

  3、已知lg2=0、3010,lg3=0、4771,求下列各對(duì)數(shù)的值(精確到小數(shù)點(diǎn)后第四位)

 。1)lg6;(2)lg;(3)lg;(4)lg32、

高一數(shù)學(xué)教案集錦 篇7

  【摘要】鑒于大家對(duì)數(shù)學(xué)網(wǎng)十分關(guān)注,小編在此為大家整理了此文空間幾何體的三視圖和直觀圖高一數(shù)學(xué)教案,供大家參考!

  本文題目:空間幾何體的三視圖和直觀圖高一數(shù)學(xué)教案

  第一課時(shí) 1.2.1中心投影與平行投影 1.2.2空間幾何體的三視圖

  教學(xué)要求:能畫出簡(jiǎn)單幾何體的三視圖;能識(shí)別三視圖所表示的空間幾何體.

  教學(xué)重點(diǎn):畫出三視圖、識(shí)別三視圖.

  教學(xué)難點(diǎn):識(shí)別三視圖所表示的空間幾何體.

  教學(xué)過程:

  一、新課導(dǎo)入:

  1. 討論:能否熟練畫出上節(jié)所學(xué)習(xí)的幾何體?工程師如何制作工程設(shè)計(jì)圖紙?

  2. 引入:從不同角度看廬山,有古詩:橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同。不識(shí)廬山真面目,只緣身在此山中。 對(duì)于我們所學(xué)幾何體,常用三視圖和直觀圖來畫在紙上.

  三視圖:觀察者從不同位置觀察同一個(gè)幾何體,畫出的空間幾何體的圖形;

  直觀圖:觀察者站在某一點(diǎn)觀察幾何體,畫出的空間幾何體的圖形.

  用途:工程建設(shè)、機(jī)械制造、日常生活.

  二、講授新課:

  1. 教學(xué)中心投影與平行投影:

 、 投影法的提出:物體在光線的照射下,就會(huì)在地面或墻壁上產(chǎn)生影子。人們將這種自然現(xiàn)象加以科學(xué)的抽象,總結(jié)其中的規(guī)律,提出了投影的'方法。

 、 中心投影:光由一點(diǎn)向外散射形成的投影。其投影的大小隨物體與投影中心間距離的變化而變化,所以其投影不能反映物體的實(shí)形.

 、 平行投影:在一束平行光線照射下形成的投影. 分正投影、斜投影.

  討論:點(diǎn)、線、三角形在平行投影后的結(jié)果.

  2. 教學(xué)柱、錐、臺(tái)、球的三視圖:

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖

  討論:三視圖與平面圖形的關(guān)系? 畫出長(zhǎng)方體的三視圖,并討論所反應(yīng)的長(zhǎng)、寬、高

  結(jié)合球、圓柱、圓錐的模型,從正面(自前而后)、側(cè)面(自左而右)、上面(自上而下)三個(gè)角度,分別觀察,畫出觀察得出的各種結(jié)果. 正視圖、側(cè)視圖、俯視圖.

 、 試畫出:棱柱、棱錐、棱臺(tái)、圓臺(tái)的三視圖. (

 、 討論:三視圖,分別反應(yīng)物體的哪些關(guān)系(上下、左右、前后)?哪些數(shù)量(長(zhǎng)、寬、高)

  正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;

  俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;

  側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

 、 討論:根據(jù)以上的三視圖,如何逆向得到幾何體的形狀.

  (試變化以上的三視圖,說出相應(yīng)幾何體的擺放)

  3. 教學(xué)簡(jiǎn)單組合體的三視圖:

 、 畫出教材P16 圖(2)、(3)、(4)的三視圖.

 、 從教材P16思考中三視圖,說出幾何體.

  4. 練習(xí):

 、 畫出正四棱錐的三視圖.

  畫出右圖所示幾何體的三視圖.

  ③ 右圖是一個(gè)物體的正視圖、左視圖和俯視圖,試描述該物體的形狀.

  5. 小結(jié):投影法;三視圖;順與逆

  三、鞏固練習(xí): 練習(xí):教材P17 1、2、3、4

  第二課時(shí) 1.2.3 空間幾何體的直觀圖

  教學(xué)要求:掌握斜二測(cè)畫法;能用斜二測(cè)畫法畫空間幾何體的直觀圖.

  教學(xué)重點(diǎn):畫出直觀圖.

高一數(shù)學(xué)教案集錦 篇8

    教學(xué) 目標(biāo)

  1、使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng)、

  (1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)唯一確定的、

  (2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第 項(xiàng) 與項(xiàng)數(shù) 的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個(gè)通項(xiàng)公式、

 。3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項(xiàng)、

  2、通過對(duì)一列數(shù)的觀察、歸納,寫出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力、

  3、通過由 求 的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣、

    教學(xué) 建議

  (1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會(huì)數(shù)列知識(shí)在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對(duì)所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個(gè)數(shù)的計(jì)算等、

 。2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系、在 教學(xué) 中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列、函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法、由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法遞推公式法、

 。3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡(jiǎn)單的代入法, 教師 應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對(duì)程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助、

 。4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動(dòng)等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用 來調(diào)整等、如果學(xué)生一時(shí)不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系、

 。5)對(duì)每個(gè)數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前 項(xiàng)和的概念,用 表示 的問題是重點(diǎn)問題,可先提出一個(gè)具體問題讓學(xué)生分析 與 的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào) 的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況、

 。6)給出一些簡(jiǎn)單數(shù)列的通項(xiàng)公式,可以求其最大項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對(duì)程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識(shí)是可以解決的、

    教學(xué) 設(shè)計(jì)示例

  數(shù)列的概念

    教學(xué) 目標(biāo)

  1、通過 教學(xué) 使學(xué)生理解數(shù)列的概念,了解數(shù)列的表示法,能夠根據(jù)通項(xiàng)公式寫出數(shù)列的項(xiàng)、

  2、通過數(shù)列定義的歸納概括,初步培養(yǎng)學(xué)生的觀察、抽象概括能力;滲透函數(shù)思想、

  3、通過有關(guān)數(shù)列實(shí)際應(yīng)用的介紹,激發(fā)學(xué)生學(xué)習(xí)研究數(shù)列的積極性、

    教學(xué) 重點(diǎn),難點(diǎn)

  教學(xué) 重點(diǎn)是數(shù)列的定義的歸納與認(rèn)識(shí); 教學(xué) 難點(diǎn)是數(shù)列與函數(shù)的聯(lián)系與區(qū)別、

    教學(xué) 用具: 電腦,課件(媒體資料),投影儀,幻燈片

    教學(xué) 方法: 講授法為主

    教學(xué) 過程

  一、揭示課題

  今天開始我們研究一個(gè)新課題、

  先舉一個(gè)生活中的例子:場(chǎng)地上堆放了一些圓鋼,最底下的一層有100根,在其上一層(稱作第二層)碼放了99根,第三層碼放了98根,依此類推,問:最多可放多少層?第57層有多少根?從第1層到第57層一共有多少根?我們不能滿足于一層層的去數(shù),而是要但求如何去研究,找出一般規(guī)律、實(shí)際上我們要研究的是這樣的一列數(shù)

 。 板書 ) 象這樣排好隊(duì)的數(shù)就是我們的研究對(duì)象數(shù)列、

 。 板書 )第三章 數(shù)列

 。ㄒ唬⿺(shù)列的概念

  二、講解新課

  要研究數(shù)列先要知道何為數(shù)列,即先要給數(shù)列下定義,為幫助同學(xué)概括出數(shù)列的定義,再給出幾列數(shù):

 。ɑ脽羝

 、

  自然數(shù)排成一列數(shù):

 、

  3個(gè)1排成一列:

 、

  無數(shù)個(gè)1排成一列:

 、

  的不足近似值,分別近似到 排列起來:

  ⑤

  正整數(shù) 的倒數(shù)排成一列數(shù):

 、

  函數(shù) 當(dāng) 依次取 時(shí)得到一列數(shù):

 、

  函數(shù) 當(dāng) 依次取 時(shí)得到一列數(shù):

 、

  請(qǐng)學(xué)生觀察8列數(shù),說明每列數(shù)就是一個(gè)數(shù)列,數(shù)列中的每個(gè)數(shù)都有自己的特定的位置,這樣數(shù)列就是按一定順序排成的一列數(shù)、

 。 板書 )1、數(shù)列的定義:按一定次序排成的一列數(shù)叫做數(shù)列、

  為表述方便給出幾個(gè)名稱:項(xiàng),項(xiàng)數(shù),首項(xiàng)(以幻燈片的形式給出)、以上述八個(gè)數(shù)列為例,讓學(xué)生練習(xí)了指出某一個(gè)數(shù)列的首項(xiàng)是多少,第二項(xiàng)是多少,指出某一個(gè)數(shù)列的一些項(xiàng)的項(xiàng)數(shù)、

  由此可以看出,給定一個(gè)數(shù)列,應(yīng)能夠指明第一項(xiàng)是多少,第二項(xiàng)是多少,……,每一項(xiàng)都是確定的,即指明項(xiàng)數(shù),對(duì)應(yīng)的項(xiàng)就確定、所以數(shù)列中的每一項(xiàng)與其項(xiàng)數(shù)有著對(duì)應(yīng)關(guān)系,這與我們學(xué)過的函數(shù)有密切關(guān)系、

 。 板書 )2、數(shù)列與函數(shù)的關(guān)系

  數(shù)列可以看作特殊的函數(shù),項(xiàng)數(shù)是其自變量,項(xiàng)是項(xiàng)數(shù)所對(duì)應(yīng)的'函數(shù)值,數(shù)列的定義域是正整數(shù)集 ,或是正整數(shù)集 的有限子集 、

  于是我們研究數(shù)列就可借用函數(shù)的研究方法,用函數(shù)的觀點(diǎn)看待數(shù)列、

  遇到數(shù)學(xué)概念不單要下定義,還要給其數(shù)學(xué)表示,以便研究與交流,下面探討數(shù)列的表示法、

 。 板書 )3、數(shù)列的表示法

  數(shù)列可看作特殊的函數(shù),其表示也應(yīng)與函數(shù)的表示法有聯(lián)系,首先請(qǐng)學(xué)生回憶函數(shù)的表示法:列表法,圖象法,解析式法、相對(duì)于列表法表示一個(gè)函數(shù),數(shù)列有這樣的表示法:用 表示第一項(xiàng),用 表示第一項(xiàng),……,用 表示第 項(xiàng),依次寫出成為

 。 板書 )(1)列舉法

  (如幻燈片上的例子)簡(jiǎn)記為

  一個(gè)函數(shù)的直觀形式是其圖象,我們也可用圖形表示一個(gè)數(shù)列,把它稱作圖示法、

  ( 板書 )(2)圖示法

  啟發(fā)學(xué)生仿照函數(shù)圖象的畫法畫數(shù)列的圖形、具體方法是以項(xiàng)數(shù) 為橫坐標(biāo),相應(yīng)的項(xiàng) 為縱坐標(biāo),即以 為坐標(biāo)在平面直角坐標(biāo)系中做出點(diǎn)(以前面提到的數(shù)列 為例,做出一個(gè)數(shù)列的圖象),所得的數(shù)列的圖形是一群孤立的點(diǎn),因?yàn)闄M坐標(biāo)為正整數(shù),所以這些點(diǎn)都在 軸的右側(cè),而點(diǎn)的個(gè)數(shù)取決于數(shù)列的項(xiàng)數(shù)、從圖象中可以直觀地看到數(shù)列的項(xiàng)隨項(xiàng)數(shù)由小到大變化而變化的趨勢(shì)、

  有些函數(shù)可以用解析式來表示,解析式反映了一個(gè)函數(shù)的函數(shù)值與自變量之間的數(shù)量關(guān)系,類似地有一些數(shù)列的項(xiàng)能用其項(xiàng)數(shù)的函數(shù)式表示出來,即 ,這個(gè)函數(shù)式叫做數(shù)列的通項(xiàng)公式、

  ( 板書 )(3)通項(xiàng)公式法

  如數(shù)列 的通項(xiàng)公式為 ;

  的通項(xiàng)公式為 ;

  的通項(xiàng)公式為 ;

  數(shù)列的通項(xiàng)公式具有雙重身份,它表示了數(shù)列的第 項(xiàng),又是這個(gè)數(shù)列中所有各項(xiàng)的一般表示、通項(xiàng)公式反映了一個(gè)數(shù)列項(xiàng)與項(xiàng)數(shù)的函數(shù)關(guān)系,給了數(shù)列的通項(xiàng)公式,這個(gè)數(shù)列便確定了,代入項(xiàng)數(shù)就可求出數(shù)列的每一項(xiàng)、

  例如,數(shù)列 的通項(xiàng)公式 ,則 、

  值得注意的是,正如一個(gè)函數(shù)未必能用解析式表示一樣,不是所有的數(shù)列都有通項(xiàng)公式,即便有通項(xiàng)公式,通項(xiàng)公式也未必唯一、

  除了以上三種表示法,某些數(shù)列相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,這個(gè)關(guān)系用一個(gè)公式來表示,叫做遞推公式、

 。 板書 )(4)遞推公式法

  如前面所舉的鋼管的例子,第 層鋼管數(shù) 與第 層鋼管數(shù) 的關(guān)系是 ,再給定 ,便可依次求出各項(xiàng)、再如數(shù)列 中, ,這個(gè)數(shù)列就是 、

  像這樣,如果已知數(shù)列的第1項(xiàng)(或前幾項(xiàng)),且任一項(xiàng)與它的前一項(xiàng)(或前幾項(xiàng))間的關(guān)系用一個(gè)公式來表示,這個(gè)公式叫做這個(gè)數(shù)列的遞推公式、遞推公式是數(shù)列所特有的表示法,它包含兩個(gè)部分,一是遞推關(guān)系,一是初始條件,二者缺一不可、

  可由學(xué)生舉例,以檢驗(yàn)學(xué)生是否理解、

  三、小結(jié)

  1、數(shù)列的概念

  2、數(shù)列的四種表示

  四、作業(yè)? 略

  五、 板書 設(shè)計(jì)

  數(shù)列

 。ㄒ唬⿺(shù)列的概念 涉及的數(shù)列及表示

  1、數(shù)列的定義

  2、數(shù)列與函數(shù)的關(guān)系

  3、數(shù)列的表示法

 。1)列舉法

  (2)圖示法

 。3)通項(xiàng)公式法

 。4)遞推公式法

  探究活動(dòng)

  將邊長(zhǎng)為 厘米的正方形分成 個(gè)邊長(zhǎng)為1厘米的正方形,數(shù)出其中所有正方形的個(gè)數(shù)、

  解:當(dāng) 時(shí),共有正方形 個(gè);當(dāng) 時(shí),共有正方形 個(gè);當(dāng) 時(shí),共有正方形 個(gè);當(dāng) 時(shí),共有正方形 個(gè);當(dāng) 時(shí),共有正方形 個(gè);歸納猜想邊長(zhǎng)為 厘米的正方形中的正方形共有 個(gè)、

高一數(shù)學(xué)教案集錦 篇9

  一、教學(xué)目標(biāo)

  1、知識(shí)與技能

 。1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。

 。2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。

 。3)會(huì)用語言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。

  (4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類。

  2、過程與方法

 。1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。

  (2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。

  3、情感態(tài)度與價(jià)值觀

 。1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。

  (2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。 難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。

  三、教學(xué)用具

 。1)學(xué)法:觀察、思考、交流、討論、概括。

 。2)實(shí)物模型、投影儀 四、教學(xué)思路

  (一)創(chuàng)設(shè)情景,揭示課題

  1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對(duì)學(xué)生的活動(dòng)及時(shí)給予評(píng)價(jià)。

  2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對(duì)這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的'內(nèi)容。

  (二)、研探新知

  1、引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對(duì)物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。

  2、觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?

  3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。

 。1)有兩個(gè)面互相平行;

 。2)其余各面都是平行四邊形;

 。3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

  4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。

  5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對(duì)棱柱分類?

  請(qǐng)列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?

  6、以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

  7、讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。

  8、引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。

  9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。

  10、現(xiàn)實(shí)世界中,我們看到的物體大多由具有柱、錐、臺(tái)、球等幾何結(jié)構(gòu)特征的物體組合而成。請(qǐng)列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?

  (三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。

  1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)

  2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?

  3、課本P8,習(xí)題1.1 A組第1題。

  4、圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

  5、棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?

  四、鞏固深化

  練習(xí):課本P7 練習(xí)1、2(1)(2) 課本P8 習(xí)題1.1 第2、3、4題 五、歸納整理

  由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容 六、布置作業(yè)

  課本P8 練習(xí)題1.1 B組第1題

  課外練習(xí) 課本P8 習(xí)題1.1 B組第2題

高一數(shù)學(xué)教案集錦 篇10

  教學(xué)目標(biāo):

  1、掌握平面向量的數(shù)量積及其幾何意義;

  2、掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;

  3、了解用平面向量的數(shù)量積可以處理有關(guān)長(zhǎng)度、角度和垂直的問題;

  4、掌握向量垂直的條件、

  教學(xué)重難點(diǎn):

  教學(xué)重點(diǎn):平面向量的數(shù)量積定義

  教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的.理解和平面向量數(shù)量積的應(yīng)用

  教學(xué)工具:

  投影儀

  教學(xué)過程:

  一、復(fù)習(xí)引入:

  1、向量共線定理向量與非零向量共線的充要條件是:有且只有一個(gè)非零實(shí)數(shù)λ,使=λ

  五,課堂小結(jié)

  (1)請(qǐng)學(xué)生回顧本節(jié)課所學(xué)過的知識(shí)內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?

  (2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請(qǐng)向老師提出。

  (3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?

  六、課后作業(yè)

  P107習(xí)題2、4A組2、7題

  課后小結(jié)

  (1)請(qǐng)學(xué)生回顧本節(jié)課所學(xué)過的知識(shí)內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?

  (2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請(qǐng)向老師提出。

  (3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?

  課后習(xí)題

高一數(shù)學(xué)教案集錦 篇11

  知識(shí)結(jié)構(gòu)

  重難點(diǎn)分析

  本節(jié)的重點(diǎn)是二次根式的化簡(jiǎn).本章自始至終圍繞著二次根式的化簡(jiǎn)與計(jì)算進(jìn)行,而二次根式的化簡(jiǎn)不但涉及到前面學(xué)習(xí)過的算術(shù)平方根、二次根式等概念與二次根式的運(yùn)算性質(zhì),還要牽涉到絕對(duì)值以及各種非負(fù)數(shù)、因式分解等知識(shí),在應(yīng)用中常常需要對(duì)字母進(jìn)行分類討論.

  本節(jié)的難點(diǎn)是正確理解與應(yīng)用公式.這個(gè)公式的表達(dá)形式對(duì)學(xué)生來說,比較生疏,而實(shí)際運(yùn)用時(shí),則要牽涉到對(duì)字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯(cuò)誤.

  教法建議

  1.性質(zhì)的引入方法很多,以下2種比較常用:

  (1)設(shè)計(jì)問題引導(dǎo)啟發(fā):由設(shè)計(jì)的問題

  1)、各等于什么?

  2)、各等于什么?

  啟發(fā)、引導(dǎo)學(xué)生猜想出

  (2)從算術(shù)平方根的意義引入.

  2.性質(zhì)的鞏固有兩個(gè)方面需要注意:

  (1)注意與性質(zhì)進(jìn)行對(duì)比,可出幾道類型不同的題進(jìn)行比較;

  (2)學(xué)生初次接觸這種形式的表示方式,在教學(xué)時(shí)要注意細(xì)分層次加以鞏固,如單個(gè)數(shù)字,單個(gè)字母,單項(xiàng)式,可進(jìn)行因式分解的多項(xiàng)式,等等.

  (第1課時(shí))

  一、教學(xué)目標(biāo)

  1.掌握二次根式的性質(zhì)

  2.能夠利用二次根式的性質(zhì)化簡(jiǎn)二次根式

  3.通過本節(jié)的學(xué)習(xí)滲透分類討論的數(shù)學(xué)思想和方法

  二、教學(xué)設(shè)計(jì)

  對(duì)比、歸納、總結(jié)

  三、重點(diǎn)和難點(diǎn)

  1.重點(diǎn):理解并掌握二次根式的性質(zhì)

  2.難點(diǎn):理解式子中的可以取任意實(shí)數(shù),并能根據(jù)字母的取值范圍正確地化簡(jiǎn)有關(guān)的二次根式.

  四、課時(shí)安排

  1課時(shí)

  五、教B具學(xué)具準(zhǔn)備

  投影儀、膠片、多媒體

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  復(fù)習(xí)對(duì)比,歸納整理,應(yīng)用提高,以學(xué)生活動(dòng)為主

  七、教學(xué)過程

  一、導(dǎo)入新課

  我們知道,式子表示非負(fù)數(shù)的算術(shù)平方根.

  問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?

  答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實(shí)數(shù).

  二、新課

  計(jì)算下列各題,并回答以下問題:

  (1);(2);(3);

  1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?

  2.各小題的結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)有什么關(guān)系?

  3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語言敘述你的結(jié)論.

高一數(shù)學(xué)教案集錦 篇12

  教學(xué)目標(biāo)

  1.理解分?jǐn)?shù)指數(shù)冪的含義,了解實(shí)數(shù)指數(shù)冪的意義。

  2.掌握有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),靈活的運(yùn)用乘法公式進(jìn)行有理數(shù)指數(shù)冪的運(yùn)算和化簡(jiǎn),會(huì)進(jìn)行根式與分?jǐn)?shù)指數(shù)冪的相互轉(zhuǎn)化。

  教學(xué)重點(diǎn)

  1.分?jǐn)?shù)指數(shù)冪含義的理解。

  2.有理數(shù)指數(shù)冪的.運(yùn)算性質(zhì)的理解。

  3.有理數(shù)指數(shù)冪的運(yùn)算和化簡(jiǎn)。

  教學(xué)難點(diǎn)

  1.分?jǐn)?shù)指數(shù)冪含義的理解。

  2.有理數(shù)指數(shù)冪的運(yùn)算和化簡(jiǎn)。

  教學(xué)過程

  一.問題情景

  上節(jié)課研究了根式的意義及根式的性質(zhì),那么根式與指數(shù)冪有什么關(guān)系?整數(shù)指數(shù)冪有那些運(yùn)算性質(zhì)?

  二.學(xué)生活動(dòng)

  1.說出下列各式的意義,并指出其結(jié)果的指數(shù),被開方數(shù)的指數(shù)及根指數(shù)三者之間的關(guān)系

 。1)=(2)=

  2.從上述問題中,你能得到的結(jié)論為

  3.(a0)及(a0)能否化成指數(shù)冪的形式?

  三.數(shù)學(xué)理論

  正分?jǐn)?shù)指數(shù)冪的意義:=(a0,m,n均為正整數(shù))

  負(fù)分?jǐn)?shù)指數(shù)冪的意義:=(a0,m,n均為正整數(shù))

  1.規(guī)定:0的正分?jǐn)?shù)指數(shù)冪仍是0,即=0

  0的負(fù)分?jǐn)?shù)指數(shù)冪無意義。

  3.規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),因而整數(shù)指數(shù)冪的運(yùn)算性質(zhì)同樣適用于有理數(shù)指數(shù)冪。

  即=(1)

  =(2)其中s,tQ,a0,b0

  =(3)

  四.數(shù)學(xué)運(yùn)用

  例1求值:

 。1)(2)(3)(4)

  例2用分?jǐn)?shù)指數(shù)冪的形式表示下列各式(a0)

  (1)(2)

  例3化簡(jiǎn)

 。1)

  (2)(3)

  例4化簡(jiǎn)

  例5已知求(1)(2)

  五.回顧小結(jié)

  1.分?jǐn)?shù)指數(shù)冪的意義。=(0,m,n)

  無意義

  2.有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)

  3.整式運(yùn)算律及乘法公式在分?jǐn)?shù)指數(shù)冪運(yùn)算中仍適用

  4.指數(shù)概念從整數(shù)指數(shù)冪推廣到有理數(shù)指數(shù)冪,同樣可以推廣到實(shí)數(shù)指數(shù)冪,請(qǐng)同學(xué)們閱讀P47的閱讀部分

  練習(xí)P47-48練習(xí)1,2,3,4

  六.課外作業(yè)

  P48習(xí)題2.2(1)2,4

高一數(shù)學(xué)教案集錦 篇13

  學(xué)習(xí)目標(biāo)

  1、掌握雙曲線的范圍、對(duì)稱性、頂點(diǎn)、漸近線、離心率等幾何性質(zhì)

  2、掌握標(biāo)準(zhǔn)方程中的幾何意義

  3、能利用上述知識(shí)進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡(jiǎn)單的實(shí)際問題

  一、預(yù)習(xí)檢查

  1、焦點(diǎn)在x軸上,虛軸長(zhǎng)為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、

  2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、

  3、雙曲線的漸進(jìn)線方程為、

  4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離是、

  二、問題探究

  探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、

  探究2、雙曲線與其漸近線具有怎樣的關(guān)系、

  練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是、

  例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、

  (1)過點(diǎn),離心率、

  (2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、

  例2已知雙曲線,直線過點(diǎn),左焦點(diǎn)到直線的距離等于該雙曲線的虛軸長(zhǎng)的,求雙曲線的離心率、

  例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、

  三、思維訓(xùn)練

  1、已知雙曲線方程為,經(jīng)過它的右焦點(diǎn),作一條直線,使直線與雙曲線恰好有一個(gè)交點(diǎn),則設(shè)直線的斜率是、

  2、橢圓的離心率為,則雙曲線的離心率為、

  3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、

  4、(理)設(shè)是雙曲線上一點(diǎn),雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點(diǎn),若,則、

  四、知識(shí)鞏固

  1、已知雙曲線方程為,過一點(diǎn)(0,1),作一直線,使與雙曲線無交點(diǎn),則直線的斜率的集合是、

  2、設(shè)雙曲線的一條準(zhǔn)線與兩條漸近線交于兩點(diǎn),相應(yīng)的焦點(diǎn)為,若以為直徑的圓恰好過點(diǎn),則離心率為、

  3、已知雙曲線的左,右焦點(diǎn)分別為,點(diǎn)在雙曲線的右支上,且,則雙曲線的離心率的值為、

  4、設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率、

  5、(理)雙曲線的焦距為,直線過點(diǎn)和,且點(diǎn)(1,0)到直線的距離與點(diǎn)(-1,0)到直線的距離之和、求雙曲線的離心率的取值范圍、

高一數(shù)學(xué)教案集錦 篇14

  教學(xué)目標(biāo):

  使學(xué)生理解函數(shù)的概念,明確決定函數(shù)的三個(gè)要素,學(xué)會(huì)求某些函數(shù)的定義域,掌握判定兩個(gè)函數(shù)是否相同的方法;使學(xué)生理解靜與動(dòng)的辯證關(guān)系.

  教學(xué)重點(diǎn):

  函數(shù)的概念,函數(shù)定義域的求法.

  教學(xué)難點(diǎn):

  函數(shù)概念的理解.

  教學(xué)過程:

  Ⅰ.課題導(dǎo)入

  [師]在初中,我們已經(jīng)學(xué)習(xí)了函數(shù)的概念,請(qǐng)同學(xué)們回憶一下,它是怎樣表述的?

  (幾位學(xué)生試著表述,之后,教師將學(xué)生的回答梳理,再表述或者啟示學(xué)生將表述補(bǔ)充完整再條理表述).

  設(shè)在一個(gè)變化的過程中有兩個(gè)變量x和y,如果對(duì)于x的每一個(gè)值,y都有惟一的值與它對(duì)應(yīng),那么就說y是x的函數(shù),x叫做自變量.

  [師]我們學(xué)習(xí)了函數(shù)的概念,并且具體研究了正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù),請(qǐng)同學(xué)們思考下面兩個(gè)問題:

  問題一:y=1(xR)是函數(shù)嗎?

  問題二:y=x與y=x2x 是同一個(gè)函數(shù)嗎?

  (學(xué)生思考,很難回答)

  [師]顯然,僅用上述函數(shù)概念很難回答這些問題,因此,需要從新的高度來認(rèn)識(shí)函數(shù)概念(板書課題).

 、.講授新課

  [師]下面我們先看兩個(gè)非空集合A、B的元素之間的一些對(duì)應(yīng)關(guān)系的例子.

  在(1)中,對(duì)應(yīng)關(guān)系是乘2,即對(duì)于集合A中的每一個(gè)數(shù)n,集合B中都有一個(gè)數(shù)2n和它對(duì)應(yīng).

  在(2)中,對(duì)應(yīng)關(guān)系是求平方,即對(duì)于集合A中的每一個(gè)數(shù)m,集合B中都有一個(gè)平方數(shù)m2和它對(duì)應(yīng).

  在(3)中,對(duì)應(yīng)關(guān)系是求倒數(shù),即對(duì)于集合A中的每一個(gè)數(shù)x,集合B中都有一個(gè)數(shù) 1x 和它對(duì)應(yīng).

  請(qǐng)同學(xué)們觀察3個(gè)對(duì)應(yīng),它們分別是怎樣形式的對(duì)應(yīng)呢?

  [生]一對(duì)一、二對(duì)一、一對(duì)一.

  [師]這3個(gè)對(duì)應(yīng)的共同特點(diǎn)是什么呢?

  [生甲]對(duì)于集合A中的任意一個(gè)數(shù),按照某種對(duì)應(yīng)關(guān)系,集合B中都有惟一的數(shù)和它對(duì)應(yīng).

  [師]生甲回答的很好,不但找到了3個(gè)對(duì)應(yīng)的共同特點(diǎn),還特別強(qiáng)調(diào)了對(duì)應(yīng)關(guān)系,事實(shí)上,一個(gè)集合中的數(shù)與另一集合中的數(shù)的對(duì)應(yīng)是按照一定的關(guān)系對(duì)應(yīng)的,這是不能忽略的. 實(shí)際上,函數(shù)就是從自變量x的集合到函數(shù)值y的集合的一種對(duì)應(yīng)關(guān)系.

  現(xiàn)在我們把函數(shù)的概念進(jìn)一步敘述如下:(板書)

  設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有惟一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f︰AB為從集合A到集合B的一個(gè)函數(shù).

  記作:y=f(x),xA

  其中x叫自變量,x的取值范圍A叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{y|y=f(x),xA}叫函數(shù)的值域.

  一次函數(shù)f(x)=ax+b(a0)的定義域是R,值域也是R.對(duì)于R中的任意一個(gè)數(shù)x,在R中都有一個(gè)數(shù)f(x)=ax+b(a0)和它對(duì)應(yīng).

  反比例函數(shù)f(x)=kx (k0)的定義域是A={x|x0},值域是B={f(x)|f(x)0},對(duì)于A中的任意一個(gè)實(shí)數(shù)x,在B中都有一個(gè)實(shí)數(shù)f(x)= kx (k0)和它對(duì)應(yīng).

  二次函數(shù)f(x)=ax2+bx+c(a0)的定義域是R,值域是當(dāng)a0時(shí)B={f(x)|f(x)4ac-b24a };當(dāng)a0時(shí),B={f(x)|f(x)4ac-b24a },它使得R中的任意一個(gè)數(shù)x與B中的數(shù)f(x)=ax2+bx+c(a0)對(duì)應(yīng).

  函數(shù)概念用集合、對(duì)應(yīng)的語言敘述后,我們就很容易回答前面所提出的兩個(gè)問題.

  y=1(xR)是函數(shù),因?yàn)閷?duì)于實(shí)數(shù)集R中的任何一個(gè)數(shù)x,按照對(duì)應(yīng)關(guān)系函數(shù)值是1,在R中y都有惟一確定的值1與它對(duì)應(yīng),所以說y是x的函數(shù).

  Y=x與y=x2x 不是同一個(gè)函數(shù),因?yàn)楸M管它們的對(duì)應(yīng)關(guān)系一樣,但y=x的定義域是R,而y=x2x 的定義域是{x|x0}. 所以y=x與y=x2x 不是同一個(gè)函數(shù).

  [師]理解函數(shù)的定義,我們應(yīng)該注意些什么呢?

  (教師提出問題,啟發(fā)、引導(dǎo)學(xué)生思考、討論,并和學(xué)生一起歸納、總結(jié))

  注意:①函數(shù)是非空數(shù)集到非空數(shù)集上的一種對(duì)應(yīng).

 、诜(hào)f:AB表示A到B的一個(gè)函數(shù),它有三個(gè)要素;定義域、值域、對(duì)應(yīng)關(guān)系,三者缺一不可.

  ③集合A中數(shù)的任意性,集合B中數(shù)的惟一性.

 、躥表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中,f的具體含義不一樣.

  ⑤f(x)是一個(gè)符號(hào),絕對(duì)不能理解為f與x的乘積.

  [師]在研究函數(shù)時(shí),除用符號(hào)f(x)表示函數(shù)外,還常用g(x) 、F(x)、G(x)等符號(hào)來表示

 、.例題分析

  [例1]求下列函數(shù)的定義域.

  (1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x

  分析:函數(shù)的定義域通常由問題的實(shí)際背景確定.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域.那么函數(shù)的定義域就是指能使這個(gè)式子有意義的實(shí)數(shù)x的集合.

  解:(1)x-20,即x2時(shí),1x-2 有意義

  這個(gè)函數(shù)的定義域是{x|x2}

  (2)3x+20,即x-23 時(shí)3x+2 有意義

  函數(shù)y=3x+2 的定義域是[-23 ,+)

  (3) x+10 x2

  這個(gè)函數(shù)的定義域是{x|x{x|x2}=[-1,2)(2,+).

  注意:函數(shù)的定義域可用三種方法表示:不等式、集合、區(qū)間.

  從上例可以看出,當(dāng)確定用解析式y(tǒng)=f(x)表示的函數(shù)的定義域時(shí),常有以下幾種情況:

  (1)如果f(x)是整式,那么函數(shù)的定義域是實(shí)數(shù)集R;

  (2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實(shí)數(shù)的集合;

  (3)如果f(x)是偶次根式,那么函數(shù)的定義域是使根號(hào)內(nèi)的式子不小于零的實(shí)數(shù)的集合;

  (4)如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)的集合(即使每個(gè)部分有意義的實(shí)數(shù)的集合的'交集);

  (5)如果f(x)是由實(shí)際問題列出的,那么函數(shù)的定義域是使解析式本身有意義且符合實(shí)際意義的實(shí)數(shù)的集合.

  例如:一矩形的寬為x m,長(zhǎng)是寬的2倍,其面積為y=2x2,此函數(shù)定義域?yàn)閤0而不是全體實(shí)數(shù).

  由以上分析可知:函數(shù)的定義域由數(shù)學(xué)式子本身的意義和問題的實(shí)際意義決定.

  [師]自變量x在定義域中任取一個(gè)確定的值a時(shí),對(duì)應(yīng)的函數(shù)值用符號(hào)f(a)來表示.例如,函數(shù)f(x)=x2+3x+1,當(dāng)x=2時(shí)的函數(shù)值是f(2)=22+32+1=11

  注意:f(a)是常量,f(x)是變量 ,f(a)是函數(shù)f(x)中當(dāng)自變量x=a時(shí)的函數(shù)值.

  下面我們來看求函數(shù)式的值應(yīng)該怎樣進(jìn)行呢?

  [生甲]求函數(shù)式的值,嚴(yán)格地說是求函數(shù)式中自變量x為某一確定的值時(shí)函數(shù)式的值,因此,求函數(shù)式的值,只要把函數(shù)式中的x換為相應(yīng)確定的數(shù)(或字母,或式子)進(jìn)行計(jì)算即可.

  [師]回答正確,不過要準(zhǔn)確地求出函數(shù)式的值,計(jì)算時(shí)萬萬不可粗心大意噢!

  [生乙]判定兩個(gè)函數(shù)是否相同,就看其定義域或?qū)?yīng)關(guān)系是否完全一致,完全一致時(shí),這兩個(gè)函數(shù)就相同;不完全一致時(shí),這兩個(gè)函數(shù)就不同.

  [師]生乙的回答完整嗎?

  [生]完整!(課本上就是如生乙所述那樣寫的).

  [師]大家說,判定兩個(gè)函數(shù)是否相同的依據(jù)是什么?

  [生]函數(shù)的定義.

  [師]函數(shù)的定義有三個(gè)要素:定義域、值域、對(duì)應(yīng)關(guān)系,我們判定兩個(gè)函數(shù)是否相同為什么只看兩個(gè)要素:定義域和對(duì)應(yīng)關(guān)系,而不看值域呢?

  (學(xué)生竊竊私語:是啊,函數(shù)的三個(gè)要素不是缺一不可嗎?怎不看值域呢?)

  (無人回答)

  [師]同學(xué)們預(yù)習(xí)時(shí)還是欠仔細(xì),欠思考!我們做事情,看問題都要多問幾個(gè)為什么!函數(shù)的值域是由什么決定的,不就是由函數(shù)的定義域與對(duì)應(yīng)關(guān)系決定的嗎!關(guān)注了函數(shù)的定義域與對(duì)應(yīng)關(guān)系,三者就全看了!

  (生恍然大悟,我們?cè)趺淳蜎]想到呢?)

  [例2]求下列函數(shù)的值域

  (1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}

  (3)y=x2+4x+3 (-31)

  分析:求函數(shù)的值域應(yīng)確定相應(yīng)的定義域后再根據(jù)函數(shù)的具體形式及運(yùn)算確定其值域.

  對(duì)于(1)(2)可用直接法根據(jù)它們的定義域及對(duì)應(yīng)法則得到(1)(2)的值域.

  對(duì)于(3)可借助數(shù)形結(jié)合思想利用它們的圖象得到值域,即圖象法.

  解:(1)yR

  (2)y{1,0,-1}

  (3)畫出y=x2+4x+3(-31)的圖象,如圖所示,

  當(dāng)x[-3,1]時(shí),得y[-1,8]

 、.課堂練習(xí)

  課本P24練習(xí)17.

  Ⅴ.課時(shí)小結(jié)

  本節(jié)課我們學(xué)習(xí)了函數(shù)的定義(包括定義域、值域的概念)、區(qū)間的概念及求函數(shù)定義域的方法.學(xué)習(xí)函數(shù)定義應(yīng)注意的問題及求定義域時(shí)的各種情形應(yīng)該予以重視.(本小結(jié)的內(nèi)容可由學(xué)生自己來歸納)

  Ⅵ.課后作業(yè)

  課本P28,習(xí)題1、2. 文 章來

高一數(shù)學(xué)教案集錦 篇15

  一、教學(xué)目標(biāo)

  (1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;

  (2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;

 。3)能用邏輯聯(lián)結(jié)詞和簡(jiǎn)單命題構(gòu)成不同形式的復(fù)合命題;

 。4)能識(shí)別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡(jiǎn)單命題;

 。5)會(huì)用真值表判斷相應(yīng)的復(fù)合命題的真假;

 。6)在知識(shí)學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡(jiǎn)單推理的技能.

  二、教學(xué)重點(diǎn)難點(diǎn):

  重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對(duì)“或”的含義的理解.

  三、教學(xué)過程

  1.新課導(dǎo)入

  在當(dāng)今社會(huì)中,人們從事任何工作、學(xué)習(xí),都離不開邏輯.具有一定邏輯知識(shí)是構(gòu)成一個(gè)公民的文化素質(zhì)的重要方面.數(shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識(shí),將會(huì)在我們學(xué)習(xí)的過程中不知不覺地經(jīng)常犯邏輯性的錯(cuò)誤.其實(shí),同學(xué)們?cè)诔踔幸呀?jīng)開始接觸一些簡(jiǎn)易邏輯的知識(shí).

  初一平面幾何中曾學(xué)過命題,請(qǐng)同學(xué)們舉一個(gè)命題的例子.(板書:命題.)

 。◤某踔薪佑|過的“命題”入手,提出問題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識(shí).)

  學(xué)生舉例:平行四邊形的對(duì)角線互相平. ……(1)

  兩直線平行,同位角相等.…………(2)

  教師提問:“……相等的角是對(duì)頂角”是不是命題?……(3)

 。ㄍ瑢W(xué)議論結(jié)果,答案是肯定的.)

  教師提問:什么是命題?

  (學(xué)生進(jìn)行回憶、思考.)

  概念總結(jié):對(duì)一件事情作出了判斷的語句叫做命題.

 。ń處熆隙送瑢W(xué)的回答,并作板書.)

  由于判斷有正確與錯(cuò)誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.

 。ń處熇猛队捌蛯W(xué)生討論以下問題.)

  例1 判斷以下各語句是不是命題,若是,判斷其真假:

  命題一定要對(duì)一件事情作出判斷,(3)、(4)沒有對(duì)一件事情作出判斷,所以它們不是命題.

  初中所學(xué)的命題概念涉及邏輯知識(shí),我們今天開始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡(jiǎn)易邏輯的知識(shí).

  2.講授新課

  大家看課本(人教版,試驗(yàn)修訂本,第一冊(cè)(上))從第25頁至26頁例1前,并歸納一下這段內(nèi)容主要講了哪些問題?

 。ㄆ毯笳(qǐng)同學(xué)舉手回答,一共講了四個(gè)問題.師生一道歸納如下.)

 。1)什么叫做命題?

  可以判斷真假的語句叫做命題.

  判斷一個(gè)語句是不是命題,關(guān)鍵看這語句有沒有對(duì)一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如 x2-5x+6=0

  中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).

 。2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.

  “或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.

  命題可分為簡(jiǎn)單命題和復(fù)合命題.

  不含邏輯聯(lián)結(jié)詞的命題叫做簡(jiǎn)單命題.簡(jiǎn)單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.

  由簡(jiǎn)單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡(jiǎn)單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.

 。4)命題的表示:用p ,q ,r ,s ,……來表示.

 。ń處煾鶕(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對(duì)復(fù)合命題的概念作出分析和展開.)

  我們接觸的復(fù)合命題一般有“p 或q ”“p且q ”、“非p ”、“若p 則q ”等形式.

  給出一個(gè)含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說出構(gòu)成它的簡(jiǎn)單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個(gè)簡(jiǎn)單命題,寫出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.

  對(duì)于給出“若p 則q ”形式的復(fù)合命題,應(yīng)能找到條件p 和結(jié)論q .

  在判斷一個(gè)命題是簡(jiǎn)單命題還是復(fù)合命題時(shí),不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復(fù)合命題.

  3.鞏固新課

  例2 判斷下列命題,哪些是簡(jiǎn)單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡(jiǎn)單命題.

 。1)5 ;

 。2)0.5非整數(shù);

 。3)內(nèi)錯(cuò)角相等,兩直線平行;

  (4)菱形的對(duì)角線互相垂直且平分;

  (5)平行線不相交;

 。6)若ab=0 ,則a=0 .

  (讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對(duì)“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)

高一數(shù)學(xué)教案集錦(精選15篇) 相關(guān)內(nèi)容:
  • 人教版高一數(shù)學(xué)上冊(cè)教案(通用2篇)

    一、教材分析1、教學(xué)內(nèi)容本節(jié)課內(nèi)容教材共分兩課時(shí)進(jìn)行,這是第一課時(shí),該課時(shí)主要學(xué)習(xí)函數(shù)的單調(diào)性的的概念,依據(jù)函數(shù)圖象判斷函數(shù)的單調(diào)性和應(yīng)用定義證明函數(shù)的單調(diào)性。...

  • 最新高一數(shù)學(xué)下冊(cè)教案(通用2篇)

    各位評(píng)委、各位專家,大家好!今天,我說課的內(nèi)容是人民教育出版社全日制普通高級(jí)中學(xué)教科書(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。...

  • 高一數(shù)學(xué)教案總結(jié)分享(精選5篇)

    教學(xué)目標(biāo)1、使學(xué)生掌握的概念,圖象和性質(zhì)。(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對(duì)底數(shù)的限制條件的合理性,明確的定義域。(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出的圖象,能從數(shù)形兩方面認(rèn)識(shí)的性質(zhì)。...

  • 高一數(shù)學(xué)教學(xué)反思(精選7篇)

    下面是第一范文網(wǎng)小編整理的高一數(shù)學(xué)教學(xué)反思600字,希望對(duì)大家有所幫助。今天,能有幸在這里和大家1起交流心得,我要非常感謝學(xué)校的領(lǐng)導(dǎo)和高1年級(jí)的全體老師對(duì)我工作的大力支持和幫助,特別要感謝我們高1數(shù)學(xué)備課組的各位老師,特別是我...

  • 高一數(shù)學(xué)教學(xué)反思600字(通用5篇)

    下面是第一范文網(wǎng)小編整理的高一數(shù)學(xué)教學(xué)反思600字,希望對(duì)大家有所幫助。今天,能有幸在這里和大家1起交流心得,我要非常感謝學(xué)校的領(lǐng)導(dǎo)和高1年級(jí)的全體老師對(duì)我工作的大力支持和幫助,特別要感謝我們高1數(shù)學(xué)備課組的各位老師,特別是我...

  • 高一數(shù)學(xué):交集并集說課稿

    各位領(lǐng)導(dǎo)和老師,大家好!我說課的內(nèi)容是蘇教版必修1第1章第3節(jié)第一課時(shí)《交集、并集》,下面我想談?wù)勎覍?duì)這節(jié)課的教學(xué)構(gòu)想:一、教材分析:與傳統(tǒng)的教材處理不同,本章在學(xué)生通過觀察具體集合得到集合的補(bǔ)集的概念后,上升到數(shù)學(xué)內(nèi)部,將...

  • 高一數(shù)學(xué)教學(xué)反思總結(jié)

    高一數(shù)學(xué)教師工作總結(jié)高一數(shù)學(xué)教師工作總結(jié),學(xué)校安排我上高一三個(gè)班數(shù)學(xué)。高一數(shù)學(xué)對(duì)我來說還是新手上路,但是本學(xué)期在學(xué)校領(lǐng)導(dǎo)的正確領(lǐng)導(dǎo)下,我不僅圓滿地完成了本學(xué)期的教學(xué)任務(wù),還在業(yè)務(wù)水平上有了很大的提高.這半年的教學(xué)歷程,是忙碌的...

  • 高一數(shù)學(xué)寒假作業(yè)最大最小值檢測(cè)試題

    函數(shù)f(x)=9-ax2(a0)在[0,3]上的最大值為( )A.9 B.9(1-a)C.9-a D.9-a2解析:選A.x∈[0,3]時(shí)f(x)為減函數(shù),f(x)max=f(0)=9.2.函數(shù)y=x+1-x-1的值域?yàn)? )A.(-∞,2 ] B.(0,2 ]C.[2,+∞) D.[0,+∞)解析:選B....

  • 高一數(shù)學(xué)教學(xué)反思精選3篇

    下面小編為大家整理了一些關(guān)于高一數(shù)學(xué)教學(xué)反思的范例,供大家參考,希望對(duì)大家有幫助!高一數(shù)學(xué)教學(xué)反思一走出校園,踏上工作的崗位,我已有了兩年半的教齡。...

  • 2019高一數(shù)學(xué)寒假作業(yè)答案

    題號(hào) 1 2 3 4 5 6 7 8 9 10 11 12答案 D D D A D D B C A C B C13. ; 14. 4 ; 15. 0.4; 16. ②③17.(1)∵A中有兩個(gè)元素,關(guān)于 的方程 有兩個(gè)不等的實(shí)數(shù)根, ,且 ,即所求的范圍是 ,且 ;6分(2)當(dāng) 時(shí),方程為 ,集合A= ;當(dāng) 時(shí),若關(guān)于...

  • 高一數(shù)學(xué)教學(xué)反思600字

    下面是第一范文網(wǎng)小編整理的高一數(shù)學(xué)教學(xué)反思600字,希望對(duì)大家有所幫助。今天,能有幸在這里和大家1起交流心得,我要非常感謝學(xué)校的領(lǐng)導(dǎo)和高1年級(jí)的全體老師對(duì)我工作的大力支持和幫助,特別要感謝我們高1數(shù)學(xué)備課組的各位老師,特別是我...

  • 高一數(shù)學(xué)教學(xué)反思

    面對(duì)新課改,我在教學(xué)過程中有幾點(diǎn)深刻體會(huì),如:轉(zhuǎn)變教學(xué)觀念;教學(xué)條件難于適應(yīng)新教材要求;如何處理背景知識(shí)、應(yīng)用材料等課堂延伸材料和課內(nèi)教學(xué)要求之間的矛盾等等。...

  • 人教版高一數(shù)學(xué)《零點(diǎn)求法與方程及運(yùn)用》教案

    零點(diǎn)求法與方程及運(yùn)用一、概念認(rèn)識(shí):零點(diǎn)是函數(shù) 的零點(diǎn),但不是點(diǎn),是滿足 的“ ”。二、策略優(yōu)化:①定義法 ( 與 軸交點(diǎn)),②方程法 (解方程 ),③構(gòu)造函數(shù)法, 三、運(yùn)用體驗(yàn):四、經(jīng)典訓(xùn)練:例1: 是 的零點(diǎn),若 ,則 的值滿足 . 【...

  • 高一數(shù)學(xué)簡(jiǎn)單旋轉(zhuǎn)體教案

    第一章:立體幾何初步1.1簡(jiǎn)單旋轉(zhuǎn)體一、教學(xué)目標(biāo)1.知識(shí)與技能(1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。(2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。(3)會(huì)用語言概述球、圓柱、圓錐、圓臺(tái)、棱柱、棱錐、棱臺(tái)的結(jié)構(gòu)特征。...

  • 高一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)整理:函數(shù)的定義域

    定義域(高中函數(shù)定義)設(shè)a,b是兩個(gè)非空的數(shù)集,如果按某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合a中的任意一個(gè)數(shù)x,在集合b中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:a--b為集合a到集合b的一個(gè)函數(shù),記作y=f(x),x屬于集合a。...

  • 教案大全