人教版初二數(shù)學上冊教案(通用5篇)
人教版初二數(shù)學上冊教案 篇1
教學目標:
經(jīng)歷探索兩個圓之間位置關系的過程;了解圓與圓之間的幾種位置關系;了解兩圓外切、內(nèi)切與兩圓圓心距d、半徑R和r的數(shù)量關系的聯(lián)系
教學重點和難點
重點:
圓與圓之間的幾種位置關系
難點:
兩圓外切、內(nèi)切與兩圓圓心距d、半徑R和r的數(shù)量關系的聯(lián)系
教學過程設計
一、從學生原有的認知結構提出問題
。1)復習點與圓的位置關系;
。2)復習直線與圓的位置關系。
二、師生共同研究形成概念
1.書本引例
☆ 想一想 P 125 平移兩個圓
利用平移實驗直觀地探索圓和圓的位置關系。
2.圓與圓的位置關系
每一種位置關系都可以先讓學生想想應該用什么名稱表達。在講解兩圓外切、內(nèi)切與兩圓圓心距d、半徑R和r的數(shù)量關系的聯(lián)系時,可先讓學生探索,老師不要生硬地把答案說出來
☆ 鞏固練習 若兩圓沒有交點,則這兩個圓的位置關系是 相離 ;
若兩圓有一個交點,則這兩個圓的位置關系是 相切 ;
若兩圓有兩個交點,則這兩個圓的位置關系是 相交 ;
☆ 想一想 書本P 126 想一想
通過實際例子讓學生理解圓與圓的位置關系。
3.圓與圓相切的性質(zhì)
☆ 想一想 書本P 127 想一想
旨在引導學生思考兩圓相切的性質(zhì):如果兩圓相切,那么兩圓的連心線經(jīng)過切點,這一性質(zhì)是下面議一議的基礎。學生容易看出兩圓相切圖形的軸對稱性及對稱軸,但要說明切點在連心線上則有一定困難。
如果兩圓相切,那么兩圓的連心線經(jīng)過切點
4.講解例題
例1.已知⊙ 、⊙ 相交于點A、B,∠A B = 120°,∠A B = 60°, = 6cm。求:(1)∠ A 的度數(shù);2)⊙ 的半徑 和⊙ 的半徑 。
5.講解例題
例2.兩個同樣大小的肥皂泡粘在一起,其剖面如圖所示,分隔兩個肥皂泡的肥皂膜PQ成一條直線,TP、NP分別為兩圓的切線,求∠TPN的大小。
三、隨堂練習
1.書本 P 128 隨堂練習
2.《練習冊》 P 59
四、小結
圓與圓的位置關系;圓心距與兩圓半徑和兩圓的關系。
五、作業(yè)
書本 P 130 習題3.9 1
人教版初二數(shù)學上冊教案 篇2
教學目標
1、知識與技能目標
。1)通過拼圖活動,讓學生感受無理數(shù)產(chǎn)生的實際背景和引入的必要性.
。2)能判斷給出的數(shù)是否為無理數(shù),并能說出理由.
2、過程與方法目標
(1)學生親自動手做拼圖活動,感受無理數(shù)存在的必要性和合理性,培養(yǎng)學生的動手能力和合作精神.
。2)通過回顧有理數(shù)的有關知識,能正確地進行推理和判斷識別某些數(shù)是否為有理數(shù)、無理數(shù),訓練他們的思維判斷力.
(3)借助計算器進行估算,培養(yǎng)學生的估算能力,發(fā)展學生的抽象概括能力,并在活動中進一步發(fā)展學生獨立思考、合作交流的意識和能力.
3、情感與態(tài)度目標
。1)激勵學生積極參與教學活動,提高大家學習數(shù)學的熱情.
。2)引導學生充分進行交流,討論與探索等教學活動,培養(yǎng)他們的合作精神與鉆研精神,借助計算器進行估算.
。3)了解有關無理數(shù)發(fā)現(xiàn)的知識,鼓勵學生大膽質(zhì)疑,培養(yǎng)他們?yōu)檎胬矶鴬^半的獻身精神.
教學重點
1、讓學生經(jīng)歷無理數(shù)發(fā)現(xiàn)的過程,感知生活中確實存在著不同于有理數(shù)的數(shù).
2、會判斷一個數(shù)是否為有理數(shù),是否不是有理數(shù).
3、用計算器進行無理數(shù)的'估算.
教學難點
1、把兩個邊長為1的正方形拼成一個大正方形的動手操作過程.
2、無理數(shù)概念的建立及估算.
3、判斷一個數(shù)是否為有理數(shù).
教學準備:
多媒體,兩個邊長為1的正方形,剪刀,短繩.
教學過程:
第一環(huán)節(jié):章節(jié)引入(2分鐘,學生閱讀感受)
內(nèi)容:.小紅是剛升入八年級的新生,一個周末的上午,當工程師的爸爸給小紅出了兩個數(shù)學題:
。1)兩個數(shù)3.252525……與3.252252225……一樣嗎?它們有什么不同?
。2)一個邊長為6cm的正方形木板,按如圖的痕跡鋸掉四個一樣的直角三角形.請計算剩下的正方形木板的面積是多少?剩下的正方形木板的邊長又是多少厘米呢?你能幫小紅解決這個問題嗎?
b.你能求出面積為2的正方形的邊長嗎?你知道圓周率的精確值嗎?它們能用整數(shù)或分數(shù)(即有理數(shù))來表示嗎?
第二環(huán)節(jié):復習引入(3分鐘,學生口答)
內(nèi)容:閱讀下面的資料,在數(shù)學中,有理數(shù)的定義為:形如的數(shù)(p、q為互質(zhì)的整數(shù),且p≠0)叫做有理數(shù),當p=1,q為任意整數(shù)時,有理數(shù)就是指所有的整數(shù),如:=-2等,當p≠1時,由p、q互質(zhì)可知,有理數(shù)就是指所有的分數(shù),如,-,-等,綜上所述,有理數(shù)就是整數(shù)和分數(shù)的統(tǒng)稱.
請用上述材料中所涉及的知識證明下面的問題:
a.直角邊長分別為3和1的直角三角形的斜邊長是不是有理數(shù)?
b.復習前面學過的數(shù),有理數(shù)包括整數(shù)和分數(shù),有理數(shù)范圍是否滿足實際生活的需要呢?
第三環(huán)節(jié):活動探究(15分鐘,學生動手操作,小組合作探究)
(一)發(fā)現(xiàn)新數(shù)
內(nèi)容:將課前已準備好的兩個邊長為1的小正方形剪一剪,拼一拼,設法得到一個大正方形.
在學生活動的基礎上,教師利用多媒體展示其中一種剪拼過程,并拋出下面的議一議:
。1)設大正方形的邊長為,應滿足什么條件?
。2)滿足:2=2的數(shù)是一個什么樣的數(shù)?可能是整數(shù)嗎?說明你的理由?
(3)可能是分數(shù)嗎?說說你的理由?
引出課題《數(shù)怎么又不夠用了》
(二)感受新數(shù)的廣泛性
內(nèi)容:面積為5的正方形,它的邊長b可能是有理數(shù)嗎?說說你的理由。
(三)鞏固驗證,應用拓展
內(nèi)容:aB,C是一個生活小區(qū)的兩個路口,BC長為2千米,A處是一個花園,從A到B,C兩路口的距離都是2千米,現(xiàn)要從花園到生活小區(qū)修一條最短的路,這條路的長可能是整數(shù)嗎?可能是分數(shù)嗎?說明理由.
b如圖(1)是由16個邊長為1的小正方形拼成的,試從連接這些
小正方形的兩個頂點所得的線段中,分別找出兩條長度是有理數(shù)的線段,兩條長度不是有理數(shù)的線段
第四環(huán)節(jié):介紹歷史,開闊視野(3分鐘,學生閱讀)
內(nèi)容:早在公元前,古希臘數(shù)學家畢達哥拉斯認為萬物皆“數(shù)”,即“宇宙間的一切現(xiàn)象都能歸結為整數(shù)或整數(shù)之比”,也就是一切現(xiàn)象都可用有理數(shù)去描述.后來,這個學派中的一個叫希伯索斯的成員發(fā)現(xiàn)邊長為1的正方形的對角線的長不能用整數(shù)或整數(shù)之比來表示,這個發(fā)現(xiàn)動搖了畢達哥拉斯學派的信條,據(jù)說,為此希伯斯被投進了大海,他為真理而獻出了寶貴的生命,但真理是不可戰(zhàn)勝的,后來,古希臘人終于正視了希伯索斯的發(fā)現(xiàn).
第五環(huán)節(jié):課時小結(2分鐘,全班交流)
內(nèi)容談談本節(jié)課你有什么收獲與體會?有哪些困難需要別人幫你解決?
b感受數(shù)不夠用了,會確定一個數(shù)是有理數(shù)或不是有理數(shù).
c本節(jié)課用到基本方法:動手、操作、觀察、思考,猜想驗證,推理,歸納等過程,獲取數(shù)學知識.
第六環(huán)節(jié):布置作業(yè)
人教版初二數(shù)學上冊教案 篇3
一、教學目的:
1.掌握菱形概念,知道菱形與平行四邊形的關系.
2.理解并掌握菱形的定義及性質(zhì)1、2;會用這些性質(zhì)進行有關的論證和計算,會計算菱形的面積.
3.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.
4.根據(jù)平行四邊形與矩形、菱形的從屬關系,通過畫圖向?qū)W生滲透集合思想.
二、重點、難點
1.教學重點:
菱形的性質(zhì)1、2.
2.教學難點:
菱形的性質(zhì)及菱形知識的綜合應用.
三、課堂引入
1.(復習)什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關系是什么?
2.(引入)我們已經(jīng)學習了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,請看演示:(可將事先按如圖做成的一組對邊可以活動的教具進行演示)如圖,改變平行四邊形的邊,使之一組鄰邊相等,從而引出菱形概念.
菱形定義:有一組鄰邊相等的平行四邊形叫做菱形.
【強調(diào)】 菱形(1)是平行四邊形;(2)一組鄰邊相等.
讓學生舉一些日常生活中所見到過的菱形的例子.
四、例習題分析
例1(補充)已知:如圖,四邊形ABCD是菱形,F(xiàn)是AB上一點,DF交AC于E.
求證:∠AFD=∠CBE.
證明:∵四邊形ABCD是菱形,
∴ CB=CD,CA平分∠BCD.
∴∠BCE=∠DCE.又CE=CE,
∴△BCE≌△COB(SAS).
∴∠CBE=∠CDE.
∵ 在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC
∴ ∠AFD=∠CBE.
例2(教材P108例2)略
五、隨堂練習
1.若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數(shù)分別為.
2.已知菱形的兩條對角線分別是6cm和8cm,求菱形的周長和面積.
3.已知菱形ABCD的周長為20cm,且相鄰兩內(nèi)角之比是1∶2,求菱形的對角線的長和面積.
4.已知:如圖,菱形ABCD中,E、F分別是CB、CD上的點,且BE=DF.求證:∠AEF=∠AFE.
六、課后練習
1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周長為8cm,求菱形的高.
2.如圖,四邊形ABCD是邊長為13cm的菱形,其中對角線BD長10cm,求(1)對角線AC的長度;(2)菱形ABCD的面積.
人教版初二數(shù)學上冊教案 篇4
教學目標:
1. 掌握三角形內(nèi)角和定理及其推論;
2. 弄清三角形按角的分類, 會按角的大小對三角形進行分類;
3.通過對三角形分類的學習,使學生了解數(shù)學分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。
4.通過三角形內(nèi)角和定理的證明,提高學生的邏輯思維能力,同時培養(yǎng)學生嚴謹?shù)目茖W態(tài)
5. 通過對定理及推論的分析與討論,發(fā)展學生的求同和求異的思維能力,培養(yǎng)學生聯(lián)系與轉化的辯證思想。
教學重點:
三角形內(nèi)角和定理及其推論。
教學難點:
三角形內(nèi)角和定理的證明
教學用具:
直尺、微機
教學方法:
互動式,談話法
教學過程:
1、創(chuàng)設情境,自然引入
把問題作為教學的出發(fā)點,創(chuàng)設問題情境,激發(fā)學生學習興趣和求知欲,為發(fā)現(xiàn)新知識創(chuàng)造一個最佳的心理和認知環(huán)境。
問題1 三角形三條邊的關系我們已經(jīng)明確了,而且利用上述關系解決了一些幾何問題,那么三角形的三個內(nèi)角有何關系呢?
問題2 你能用幾何推理來論證得到的關系嗎?
對于問題1絕大多數(shù)學生都能回答出來(小學學過的),問題2學生會感到困難,因為這個證明需添加輔助線,這是同學們第一次接觸的新知識―――“輔助線 ”。教師可以趁機告訴學生這節(jié)課將要學習的一個重要內(nèi)容(板書課題)
新課引入的好壞在某種程度上關系到課堂教學的成敗,本節(jié)課從舊知識切入,特別是從知識體系考慮引入,“學習了三角形邊的關系,自然想到三角形角的關系怎樣呢?”使學生感覺本節(jié)課學習的內(nèi)容自然合理。
2、設問質(zhì)疑,探究嘗試
(1)求證:三角形三個內(nèi)角的和等于
讓學生剪一個三角形,并把它的三個內(nèi)角分別剪下來,再拼成一個平面圖形。這里教師設計了電腦動畫顯示具體情景。然后,圍繞問題設計以下幾個問題讓學生思考,教師進行學法指導。
問題1 觀察:三個內(nèi)角拼成了一個 什么角?
問題2 此實驗給我們一個什么啟示?
(把三角形的三個內(nèi)角之和轉化為一個平角)
問題3 由圖中AB與CD的關系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?
其中問題2是解決本題的關鍵,教師可引導學生分析。對于問題3學生經(jīng)過思考會畫出此線的。這里教師要重點講解“輔助線”的有關知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當轉化條件;恰當轉化結論;充分提示題目中各元素間的一些不明顯的關系,達到化難為易解決問題的目的。
(2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?
學生回答后,電腦顯示圖表。
(3)三角形中三個內(nèi)角之和為定值 ,那么對三角形的其它角還有哪些特殊的關系呢?
問題1 直角三角形中,直角與其它兩個銳角有何關系?
問題2 三角形一個外角與它不相鄰的兩個內(nèi)角有何關系?
問題3 三角形一個外角與其中的一個不相鄰內(nèi)角有何關系?
其中問題1學生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學生經(jīng)過分析討論,得出結論并書寫證明過程。
這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養(yǎng)學生良好的學習習慣。第二,模仿定理的證明書寫格式,加強學生書寫能力。第三,提高學生靈活運用所學知識的能力。
3、三角形三個內(nèi)角關系的定理及推論
通過上面四個例題的分析與討論,有利于學生基礎知識與基本能力的掌握與提高,同時更有利于學生創(chuàng)新意識與創(chuàng)造性思維能力的培養(yǎng),在練習、講評等教學環(huán)節(jié)中,形成師生之間的、學生之間的“雙向反饋”是很重要的。
4、變式訓練,鞏固提高
根據(jù)例4 的度數(shù)的求法,思考如下問題:
(3)如圖5,過D點畫AB的平行線MN,與AC、BC交于點M、N,則 的度數(shù)多少?
(4)當MN繞著點D旋轉過程中, 會有怎樣的變化?
提示:變化1 當直線MN與AC、BC的交點仍在線段AC、BC上時, =
變化2 當直線MN與AC的交點在線段AC上,與BC的交點在BC的延長線上時,
變化3 當直線MN與AC的交點在線段AC的延長線上,與BC的交點在線段BC上時, =
變化4當直線MN與AC、BC的交點在C點時, =
經(jīng)過這樣的變式、發(fā)展、學習,不僅使學生鞏固了所學的數(shù)學知識,也使學生體驗了數(shù)學的運動變化觀,使學生的思維得到了培養(yǎng)。
5、小結
通過設置問題:“本節(jié)在知識方面以及在思想方法方面你有怎樣的收獲?”師生以談話交流的形式進行小結。強調(diào)學生注意:輔助線的作用及運用定理及推論解決問題時,要善于抓住條件與結論的關系。
6、布置作業(yè)
a、書面作業(yè)P43#3
b、上交作業(yè)P42#16、17
人教版初二數(shù)學上冊教案 篇5
教學目標
1.會解簡易方程,并能用簡易方程解簡單的應用題;
2.通過代數(shù)法解簡易方程進一步培養(yǎng)學生的運算能力,發(fā)展學生的應用意識;
3.通過解決問題的實踐,激發(fā)學生的學習興趣,培養(yǎng)學生的鉆研精神。
教學建議
一、教學重點、難點
重點:簡易方程的解法;
難點:根據(jù)實際問題中的數(shù)量關系正確地列出方程并求解。
二、重點、難點分析
解簡易方程的基本方法是:將方程兩邊同時加上(或減去)同一個適當?shù)臄?shù);將方程兩邊同時乘以(或除以)同一個適當?shù)臄?shù)。最終求出問題的解。
判斷方程求解過程中兩邊加上(或減去)以及乘以(或除以)的同一個數(shù)是否“適當”,關鍵是看運算的第一步能否使方程的一邊只含有帶有未知數(shù)的那個數(shù),第二步能否使方程的一邊只剩下未知數(shù),即求出結果。
列簡易方程解應用題是以列代數(shù)式為基礎的,關鍵是在弄清楚題目語句中各種數(shù)量的意義及相互關系的基礎上,選取適當?shù)奈粗獢?shù),然后把與數(shù)量有關的語句用代數(shù)式表示出來,最后利用題中的相等關系列出方程并求解。
三、知識結構
導入方程的概念解簡易方程利用簡易方程解應用題。
四、教法建議
(1)在本節(jié)的導入部分,須使學生理解的是算術運算只對已知數(shù)進行加、減、乘、除,而代數(shù)運算的優(yōu)越性體現(xiàn)在未知數(shù)獲得與已知數(shù)平等的地位,即同樣可以和已知數(shù)進行加、減、乘、除運算。對于方程、方程的解、解方程的概念讓學生了解即可。
(2)解簡易方程,要在學生積極參與的基礎上,理解何種形式的方程在求解過程中方程兩邊選擇加上(或減去)同一個數(shù),以及何種形式的方程在求解過程中兩邊選擇乘以(或除以)同一個數(shù)。另一個重要的問題就是“適當?shù)臄?shù)”的選擇了。通常,整式方程并不需要檢驗,但為了學生從一開始就養(yǎng)成自我檢查的好習慣,可以讓學生在草稿紙上檢驗,同時也是對前面學過的求代數(shù)式的值的復習。
(3)教材給出了三道應用題,其中例4是一道有關公式應用的方程問題。列簡易方程解應用題,關鍵在引導學生加深對代數(shù)式的理解基礎上,認真讀懂題意,弄清楚題目中的關鍵語句所包含的各種數(shù)量的意義及相互關系。恰當?shù)卦O未知數(shù),用代數(shù)式表示數(shù)學語句,依據(jù)相等關系正確的列出方程并求解。
(4)教學過程中,應充分發(fā)揮多媒體技術的輔助教學作用,可以參考運用相關課件提高學生的學習興趣,加深對列簡易方程解簡單的應用題的整個分析、解決問題過程的理解。此外,通過應用投影儀、幻燈片可以提高課堂效率,有利于對知識點的掌握。
五、列簡易方程解應用題
列簡易方程解應用題的一般步驟
(1)弄清題意和題目中的已知數(shù)、未知數(shù),用字母(如x)表示題目中的一個未知數(shù).
(2)找出能夠表示應用題全部含義的一個相等關系.
(3)根據(jù)這個相等關系列出需要的代數(shù)式,從而列出方程.
(4)解這個方程,求出未知數(shù)的值.
(5)寫出答案(包括單位名稱).
概括地說,列簡易方程解應用題,一般有“設、列、解、驗、答”五個步驟,審題可在草稿紙上進行.其中關鍵是“列”,即列出符合題意的方程.難點是找等量關系.要想抓住關鍵、突破難點,一定要開動腦筋,勤于思考、努力提高自己分析問題和解決問題的能力.