等腰三角形的性質(zhì)(精選11篇)
等腰三角形的性質(zhì) 篇1
知識(shí)結(jié)構(gòu)
重點(diǎn)與難點(diǎn)分析:
本節(jié)內(nèi)容的重點(diǎn)是及其推論。等腰三角形兩底角相等(等邊對(duì)等角)是證明同一三角形中兩角相等的重要依據(jù);而在推論中提到的等腰三角形底邊上的高、中線及頂角平分線三線合一這條重要性質(zhì)也是證明兩線段相等,兩個(gè)角相等及兩直線互相垂直的重要依據(jù)。為證明線段相等,角相等或垂直平提供了方法,在選擇時(shí)注意靈活運(yùn)用。
本節(jié)內(nèi)容的難點(diǎn)是文字題的證明。對(duì)文字題的證明,首先分析出命題的題設(shè)和結(jié)論,結(jié)合題意畫出草圖形,然后根據(jù)圖形寫出已知、求證,做到不重不漏,從而轉(zhuǎn)化為一般證明題。這些環(huán)節(jié)是學(xué)生感到困難的。
教法建議:
數(shù)學(xué)教學(xué)的核心是學(xué)生的“再創(chuàng)造”.根據(jù)這一指導(dǎo)思想,本節(jié)課教學(xué)可通過精心設(shè)置的一個(gè)個(gè)問題鏈,激發(fā)學(xué)生的求知欲,最終在老師的指導(dǎo)下發(fā)現(xiàn)問題、解決問題.為了充分調(diào)動(dòng)學(xué)生的積極性,使學(xué)生變被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí),本課教學(xué)擬用啟發(fā)式問題教學(xué)法.具體說明如下:
。1)發(fā)現(xiàn)問題
本節(jié)課開始,先投影顯示圖形及問題,讓學(xué)生觀察并發(fā)現(xiàn)結(jié)論。提出問題讓學(xué)生思考,創(chuàng)設(shè)問題情境,激發(fā)學(xué)生學(xué)習(xí)的欲望和要求.
。2)解決問題
對(duì)所得到的結(jié)論通過教師啟發(fā),讓學(xué)生完成證明.指導(dǎo)學(xué)生歸納總結(jié),從而順其自然得到本節(jié)課的一個(gè)定理及其兩個(gè)推論. 多讓學(xué)生親自實(shí)踐,參與探索發(fā)現(xiàn),領(lǐng)略知識(shí)形成過程,這是課堂教學(xué)的基本思想和教學(xué)理念.
。3)加深理解
學(xué)生學(xué)習(xí)的過程是對(duì)知識(shí)的消化和理解的過程,通過例題的解決,提高和完善對(duì)定理及其推論理解。這一過程采用講練結(jié)合、適時(shí)點(diǎn)撥的教學(xué)方法,把學(xué)生的注意力緊緊吸引在解決問題身上,讓學(xué)生的思維活動(dòng)在老師的引導(dǎo)下層層展開,讓學(xué)生大膽參與課堂教學(xué),使他們“聽”有所“思”、“練”有所“獲”,使傳授知識(shí)與培養(yǎng)能力融為一體。一.教學(xué)目標(biāo) :
1.掌握定理的證明及這個(gè)定理的兩個(gè)推論;
2.會(huì)運(yùn)用證明線段相等;
3.使學(xué)生掌握一般文字題的證明;
4.通過文字題的證明,提高學(xué)生幾何三種語言的互譯能力;
5.逐步培養(yǎng)學(xué)生邏輯思維能力及分析實(shí)際問題解決問題的能力;
6.滲透對(duì)稱的數(shù)學(xué)思想,培養(yǎng)學(xué)生數(shù)學(xué)應(yīng)用的觀點(diǎn);
二.教學(xué)重點(diǎn):及其推論
三.教學(xué)難點(diǎn) :文字題的證明
四.教學(xué)用具:直尺,微機(jī)
五.教學(xué)方法:?jiǎn)栴}探究法
六.教學(xué)過程 :
1、 性質(zhì)定理的發(fā)現(xiàn)與證明
(1)投影顯示:
一般學(xué)生都能發(fā)現(xiàn)等腰三角形的兩個(gè)底角相等(若有其它發(fā)現(xiàn)也要給予肯定),
(2)提醒學(xué)生:憑觀察作出的判斷準(zhǔn)確嗎?怎樣證明你的判斷?
師生討論后,確定用全等三角形證明,學(xué)生親自動(dòng)手作出證明.證明略.
教師指出:定理提示了三角形邊與角的轉(zhuǎn)化關(guān)系,由兩邊相等轉(zhuǎn)化為兩角相等,這是今后證明兩角相等常用的依據(jù),其功效不亞于利用全等三角形證明兩角相等.
2、推論1的發(fā)現(xiàn)與證明
投影顯示:
由學(xué)生觀察發(fā)現(xiàn),等腰三角形頂角平分線平分底邊并且垂直于底邊.
啟發(fā)學(xué)生自己歸納得出:頂角平分線、底邊上的中線、底邊上的高互相重合.
學(xué)生口述證明過程.
教師指出:等腰三角形的頂角的平分線,底邊上的中線、底邊上的高這“三線合一”的性質(zhì)有多重功能,可以證明兩線段相等,兩個(gè)角相等以及兩條直線的互相垂直,也可證線段成角的倍分問題。
3、推論2的發(fā)現(xiàn)與證明
投影顯示:
一般學(xué)生都能發(fā)現(xiàn)等邊三角形的三個(gè)內(nèi)角都為 .然后啟發(fā)學(xué)生與等腰三角形的“三線合一”作類比,自己得出等邊三角形的“三線合一”.
4、定理及其推論的應(yīng)用
解:(1) (2)另外兩內(nèi)角分別為: (3)
小結(jié):滲透分類思想,培養(yǎng)思維的嚴(yán)密性.
例2、已知:如圖,點(diǎn)D、E在△ABC的邊BC上,AB=AC,AD=AE
求證:BD=CE
證明:作AF⊥BC,,垂足為F,則AF⊥DE
∵AB=AC,AD=AE(已知)
AF⊥BC,AF⊥DE(輔助線作法)
∴BF=CF,DF=EF(等腰三角形底邊上的高與底邊上的中線互相重合)
∴BD=CE
強(qiáng)調(diào)說明:等腰三角形中的“三線合一”常常作為解決等腰三角形問題的輔助線,添加輔助線時(shí),有時(shí)作頂角的平分線,有時(shí)作底邊中線,有時(shí)作底邊的高,有時(shí)作哪條線都可以,有時(shí)卻不能,還要根據(jù)實(shí)際情況來定.
例3、已知:如圖,D是等邊△ABC內(nèi)一點(diǎn),DB=DA,BP=AB, DBP= DBC
求證: P=
證明:連結(jié)OC
在△BPD和△BCD中
在△ADC和△BCD中
因此, P=
例4 求證:等腰三角形兩腰上中線的交點(diǎn)到底邊兩端點(diǎn)的距離相等
已知:如圖,AB=AC,BD、CE分別為AC邊、AB邊的中線,它們相交于F點(diǎn)
求證:BF=CF
證明:∵BD、CE是△ABC的兩條中線,AB=AC
∴AD=AE,BE=CD
在△ABD和△ACE中
∴△ABD≌△ACE
∴ 1= 2
在△BEF和△CED中
∴△BEF≌△CED
∴BF=FC
設(shè)想:例1到例4,由易到難地安排學(xué)生對(duì)新授內(nèi)容的練習(xí)和鞏固.在以上教學(xué)中,特別注意“一般解題方法”的運(yùn)用.
在四個(gè)例題的教學(xué)中,充分發(fā)揮學(xué)生與學(xué)生之間的互補(bǔ)性,從而提高認(rèn)識(shí),完善認(rèn)知結(jié)構(gòu),使課堂成為學(xué)生發(fā)揮想象力和創(chuàng)造性的“學(xué)堂”
5、反饋練習(xí):
出示圖形及題目:
將實(shí)際問題數(shù)學(xué)化,培養(yǎng)學(xué)生應(yīng)用能力。
6、課堂小結(jié):
教師引導(dǎo)學(xué)生小結(jié)
。1)、
。2)、等邊三角形的性質(zhì)
。3)、文字證明題的書寫步驟
7、布置作業(yè) :
a、 書面作業(yè) P96#1、2
b、 上交作業(yè) P96#4、7、8
c、 思考題:
已知:如圖:在△ABC中,AB=AC,E在CA的延長(zhǎng)線上,∠AEF=∠AFE.
求證:EF⊥BC
證明 : 作BC邊上的高AM,M為垂足
∵AM⊥BC
∴∠BAM=∠CAM
又∵∠BAC為△AEF的外角
∴∠BAC =∠E+∠EFA
即∠BAM+∠CAM=∠E=∠EFA
∵∠AEF=∠AFE
∴∠CAM=∠E
∴EF∥AM
∵AM⊥BC
∴EF⊥BC
七.板書設(shè)計(jì) :
等腰三角形的性質(zhì) 篇2
知識(shí)結(jié)構(gòu)
重點(diǎn)與難點(diǎn)分析:
本節(jié)內(nèi)容的重點(diǎn)是及其推論。等腰三角形兩底角相等(等邊對(duì)等角)是證明同一三角形中兩角相等的重要依據(jù);而在推論中提到的等腰三角形底邊上的高、中線及頂角平分線三線合一這條重要性質(zhì)也是證明兩線段相等,兩個(gè)角相等及兩直線互相垂直的重要依據(jù)。為證明線段相等,角相等或垂直平提供了方法,在選擇時(shí)注意靈活運(yùn)用。
本節(jié)內(nèi)容的難點(diǎn)是文字題的證明。對(duì)文字題的證明,首先分析出命題的題設(shè)和結(jié)論,結(jié)合題意畫出草圖形,然后根據(jù)圖形寫出已知、求證,做到不重不漏,從而轉(zhuǎn)化為一般證明題。這些環(huán)節(jié)是學(xué)生感到困難的。
教法建議:
數(shù)學(xué)教學(xué)的核心是學(xué)生的“再創(chuàng)造”.根據(jù)這一指導(dǎo)思想,本節(jié)課教學(xué)可通過精心設(shè)置的一個(gè)個(gè)問題鏈,激發(fā)學(xué)生的求知欲,最終在老師的指導(dǎo)下發(fā)現(xiàn)問題、解決問題.為了充分調(diào)動(dòng)學(xué)生的積極性,使學(xué)生變被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí),本課教學(xué)擬用啟發(fā)式問題教學(xué)法.具體說明如下:
(1)發(fā)現(xiàn)問題
本節(jié)課開始,先投影顯示圖形及問題,讓學(xué)生觀察并發(fā)現(xiàn)結(jié)論。提出問題讓學(xué)生思考,創(chuàng)設(shè)問題情境,激發(fā)學(xué)生學(xué)習(xí)的欲望和要求.
。2)解決問題
對(duì)所得到的結(jié)論通過教師啟發(fā),讓學(xué)生完成證明.指導(dǎo)學(xué)生歸納總結(jié),從而順其自然得到本節(jié)課的一個(gè)定理及其兩個(gè)推論. 多讓學(xué)生親自實(shí)踐,參與探索發(fā)現(xiàn),領(lǐng)略知識(shí)形成過程,這是課堂教學(xué)的基本思想和教學(xué)理念.
(3)加深理解
學(xué)生學(xué)習(xí)的過程是對(duì)知識(shí)的消化和理解的過程,通過例題的解決,提高和完善對(duì)定理及其推論理解。這一過程采用講練結(jié)合、適時(shí)點(diǎn)撥的教學(xué)方法,把學(xué)生的注意力緊緊吸引在解決問題身上,讓學(xué)生的思維活動(dòng)在老師的引導(dǎo)下層層展開,讓學(xué)生大膽參與課堂教學(xué),使他們“聽”有所“思”、“練”有所“獲”,使傳授知識(shí)與培養(yǎng)能力融為一體。一.教學(xué)目標(biāo) :
1.掌握定理的證明及這個(gè)定理的兩個(gè)推論;
2.會(huì)運(yùn)用證明線段相等;
3.使學(xué)生掌握一般文字題的證明;
4.通過文字題的證明,提高學(xué)生幾何三種語言的互譯能力;
5.逐步培養(yǎng)學(xué)生邏輯思維能力及分析實(shí)際問題解決問題的能力;
6.滲透對(duì)稱的數(shù)學(xué)思想,培養(yǎng)學(xué)生數(shù)學(xué)應(yīng)用的觀點(diǎn);
二.教學(xué)重點(diǎn):及其推論
三.教學(xué)難點(diǎn) :文字題的證明
四.教學(xué)用具:直尺,微機(jī)
五.教學(xué)方法:?jiǎn)栴}探究法
六.教學(xué)過程 :
1、 性質(zhì)定理的發(fā)現(xiàn)與證明
(1)投影顯示:
一般學(xué)生都能發(fā)現(xiàn)等腰三角形的兩個(gè)底角相等(若有其它發(fā)現(xiàn)也要給予肯定),
(2)提醒學(xué)生:憑觀察作出的判斷準(zhǔn)確嗎?怎樣證明你的判斷?
師生討論后,確定用全等三角形證明,學(xué)生親自動(dòng)手作出證明.證明略.
教師指出:定理提示了三角形邊與角的轉(zhuǎn)化關(guān)系,由兩邊相等轉(zhuǎn)化為兩角相等,這是今后證明兩角相等常用的依據(jù),其功效不亞于利用全等三角形證明兩角相等.
2、推論1的發(fā)現(xiàn)與證明
投影顯示:
由學(xué)生觀察發(fā)現(xiàn),等腰三角形頂角平分線平分底邊并且垂直于底邊.
啟發(fā)學(xué)生自己歸納得出:頂角平分線、底邊上的中線、底邊上的高互相重合.
學(xué)生口述證明過程.
教師指出:等腰三角形的頂角的平分線,底邊上的中線、底邊上的高這“三線合一”的性質(zhì)有多重功能,可以證明兩線段相等,兩個(gè)角相等以及兩條直線的互相垂直,也可證線段成角的倍分問題。
3、推論2的發(fā)現(xiàn)與證明
投影顯示:
一般學(xué)生都能發(fā)現(xiàn)等邊三角形的三個(gè)內(nèi)角都為 .然后啟發(fā)學(xué)生與等腰三角形的“三線合一”作類比,自己得出等邊三角形的“三線合一”.
4、定理及其推論的應(yīng)用
解:(1) (2)另外兩內(nèi)角分別為: (3)
小結(jié):滲透分類思想,培養(yǎng)思維的嚴(yán)密性.
例2、已知:如圖,點(diǎn)D、E在△ABC的邊BC上,AB=AC,AD=AE
求證:BD=CE
證明:作AF⊥BC,,垂足為F,則AF⊥DE
∵AB=AC,AD=AE(已知)
AF⊥BC,AF⊥DE(輔助線作法)
∴BF=CF,DF=EF(等腰三角形底邊上的高與底邊上的中線互相重合)
∴BD=CE
強(qiáng)調(diào)說明:等腰三角形中的“三線合一”常常作為解決等腰三角形問題的輔助線,添加輔助線時(shí),有時(shí)作頂角的平分線,有時(shí)作底邊中線,有時(shí)作底邊的高,有時(shí)作哪條線都可以,有時(shí)卻不能,還要根據(jù)實(shí)際情況來定.
例3、已知:如圖,D是等邊△ABC內(nèi)一點(diǎn),DB=DA,BP=AB, DBP= DBC
求證: P=
證明:連結(jié)OC
在△BPD和△BCD中
在△ADC和△BCD中
因此, P=
例4 求證:等腰三角形兩腰上中線的交點(diǎn)到底邊兩端點(diǎn)的距離相等
已知:如圖,AB=AC,BD、CE分別為AC邊、AB邊的中線,它們相交于F點(diǎn)
求證:BF=CF
證明:∵BD、CE是△ABC的兩條中線,AB=AC
∴AD=AE,BE=CD
在△ABD和△ACE中
∴△ABD≌△ACE
∴ 1= 2
在△BEF和△CED中
∴△BEF≌△CED
∴BF=FC
設(shè)想:例1到例4,由易到難地安排學(xué)生對(duì)新授內(nèi)容的練習(xí)和鞏固.在以上教學(xué)中,特別注意“一般解題方法”的運(yùn)用.
在四個(gè)例題的教學(xué)中,充分發(fā)揮學(xué)生與學(xué)生之間的互補(bǔ)性,從而提高認(rèn)識(shí),完善認(rèn)知結(jié)構(gòu),使課堂成為學(xué)生發(fā)揮想象力和創(chuàng)造性的“學(xué)堂”
5、反饋練習(xí):
出示圖形及題目:
將實(shí)際問題數(shù)學(xué)化,培養(yǎng)學(xué)生應(yīng)用能力。
6、課堂小結(jié):
教師引導(dǎo)學(xué)生小結(jié)
(1)、
(2)、等邊三角形的性質(zhì)
(3)、文字證明題的書寫步驟
7、布置作業(yè) :
a、 書面作業(yè) P96#1、2
b、 上交作業(yè) P96#4、7、8
c、 思考題:
已知:如圖:在△ABC中,AB=AC,E在CA的延長(zhǎng)線上,∠AEF=∠AFE.
求證:EF⊥BC
證明 : 作BC邊上的高AM,M為垂足
∵AM⊥BC
∴∠BAM=∠CAM
又∵∠BAC為△AEF的外角
∴∠BAC =∠E+∠EFA
即∠BAM+∠CAM=∠E=∠EFA
∵∠AEF=∠AFE
∴∠CAM=∠E
∴EF∥AM
∵AM⊥BC
∴EF⊥BC
七.板書設(shè)計(jì) :
等腰三角形的性質(zhì) 篇3
一、教學(xué)目的
使學(xué)生掌握等腰三角形性質(zhì)定理(包括推論)及其證明.
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):等腰三角形的性質(zhì).
難點(diǎn):文字命題的證明.
三、教學(xué)過程
復(fù)習(xí)提問
什么叫做等腰三角形?什么是等腰三角形的腰、底邊、頂點(diǎn)和底角?
引入新課
教師演示事先備好的等腰三角形紙片對(duì)折,使兩腰疊在一起,發(fā)現(xiàn)它的兩底角重合,從而得到等腰三角形兩底角相等的命題,當(dāng)然此命題的真實(shí)性還需推理論證.
新課
1.等腰三角形的性質(zhì)定理 等腰三角形的兩底角相等(簡(jiǎn)寫成“等邊對(duì)等角”).
讓學(xué)生回憶前面學(xué)過的文字命題證明的全過程.引導(dǎo)學(xué)生寫出已知、求證,并且都要結(jié)合圖形使之具體化.
2.推論1 等腰三角形頂角平分線平分底邊且垂直于底邊.
從性質(zhì)定理的證明過程可以知道(如圖1)BD=DC,∠ADB=∠ADC,所以AD平分BC,且AD⊥BC,即得推論.
從推論1 可以知道,等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合.
推論2 等邊三角形的各角都相等,并且每一個(gè)角都等于60°.
3.等腰三角形性質(zhì)的應(yīng)用.等腰三角形的性質(zhì)有著重要的應(yīng)用,一般說,利用“等腰三角形兩底角相等”的性質(zhì)證明兩角相等;利用“等腰三角形底邊上的三條主要線段重合”的性質(zhì),來證明兩條線段相等、兩個(gè)角相等及兩條直線互相垂直;利用“等邊三角形各角相等,并且每一個(gè)角都等于60°”的性質(zhì),來證明一個(gè)角是60°,或作圖中通過作等邊三角形,作出一個(gè)60°的角.
例1 已知:如圖2,房屋的頂角∠BAC=100°,過屋頂A的立柱AD⊥BC、屋椽AB=AC.求頂架上∠B、∠C、∠BAD、∠CAD的度數(shù).
這是一道幾何計(jì)算題,要使學(xué)生熟悉解計(jì)算題的步驟,引導(dǎo)學(xué)生寫出解題過程.
小結(jié)
1.敘述等腰三角形的性質(zhì)(本堂所講定理及推論)及其應(yīng)用.
2.等腰三角形頂角與底角之間的常用關(guān)系式:在△ABC中,AB=AC,則
(1)∠A=180°-2∠B=180°-2∠C;
3.已知等腰三角形一個(gè)角的度數(shù),求其它兩個(gè)角的度數(shù):(1)若已知角是鈍角或直角,則此角一定為頂角,于是由2中(2)可求出兩底角;(2)若已知角是銳角,則此角可能是頂角,也可能是底角.若為前者,可按2中(2)求出兩底角.若為后者,則可按2中(1)求出頂角.
練習(xí):略
作業(yè) :略
四、教學(xué)注意問題
1.等腰三角形的性質(zhì)在今后解(證)幾何題中有著重要的應(yīng)用,務(wù)必引起學(xué)生重視.且應(yīng)反復(fù)練習(xí).
2.幾何計(jì)算題的一般解題步驟.
等腰三角形的性質(zhì) 篇4
知識(shí)結(jié)構(gòu)
重點(diǎn)與難點(diǎn)分析:
本節(jié)內(nèi)容的重點(diǎn)是及其推論。等腰三角形兩底角相等(等邊對(duì)等角)是證明同一三角形中兩角相等的重要依據(jù);而在推論中提到的等腰三角形底邊上的高、中線及頂角平分線三線合一這條重要性質(zhì)也是證明兩線段相等,兩個(gè)角相等及兩直線互相垂直的重要依據(jù)。為證明線段相等,角相等或垂直平提供了方法,在選擇時(shí)注意靈活運(yùn)用。
本節(jié)內(nèi)容的難點(diǎn)是文字題的證明。對(duì)文字題的證明,首先分析出命題的題設(shè)和結(jié)論,結(jié)合題意畫出草圖形,然后根據(jù)圖形寫出已知、求證,做到不重不漏,從而轉(zhuǎn)化為一般證明題。這些環(huán)節(jié)是學(xué)生感到困難的。
教法建議:
數(shù)學(xué)教學(xué)的核心是學(xué)生的“再創(chuàng)造”.根據(jù)這一指導(dǎo)思想,本節(jié)課教學(xué)可通過精心設(shè)置的一個(gè)個(gè)問題鏈,激發(fā)學(xué)生的求知欲,最終在老師的指導(dǎo)下發(fā)現(xiàn)問題、解決問題.為了充分調(diào)動(dòng)學(xué)生的積極性,使學(xué)生變被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí),本課教學(xué)擬用啟發(fā)式問題教學(xué)法.具體說明如下:
(1)發(fā)現(xiàn)問題
本節(jié)課開始,先投影顯示圖形及問題,讓學(xué)生觀察并發(fā)現(xiàn)結(jié)論。提出問題讓學(xué)生思考,創(chuàng)設(shè)問題情境,激發(fā)學(xué)生學(xué)習(xí)的欲望和要求.
。2)解決問題
對(duì)所得到的結(jié)論通過教師啟發(fā),讓學(xué)生完成證明.指導(dǎo)學(xué)生歸納總結(jié),從而順其自然得到本節(jié)課的一個(gè)定理及其兩個(gè)推論. 多讓學(xué)生親自實(shí)踐,參與探索發(fā)現(xiàn),領(lǐng)略知識(shí)形成過程,這是課堂教學(xué)的基本思想和教學(xué)理念.
(3)加深理解
學(xué)生學(xué)習(xí)的過程是對(duì)知識(shí)的消化和理解的過程,通過例題的解決,提高和完善對(duì)定理及其推論理解。這一過程采用講練結(jié)合、適時(shí)點(diǎn)撥的教學(xué)方法,把學(xué)生的注意力緊緊吸引在解決問題身上,讓學(xué)生的思維活動(dòng)在老師的引導(dǎo)下層層展開,讓中國(guó)學(xué)習(xí)聯(lián)盟膽參與課堂教學(xué),使他們“聽”有所“思”、“練”有所“獲”,使傳授知識(shí)與培養(yǎng)能力融為一體。一.教學(xué)目標(biāo) :
1.掌握定理的證明及這個(gè)定理的兩個(gè)推論;
2.會(huì)運(yùn)用證明線段相等;
3.使學(xué)生掌握一般文字題的證明;
4.通過文字題的證明,提高學(xué)生幾何三種語言的互譯能力;
5.逐步培養(yǎng)學(xué)生邏輯思維能力及分析實(shí)際問題解決問題的能力;
6.滲透對(duì)稱的數(shù)學(xué)思想,培養(yǎng)學(xué)生數(shù)學(xué)應(yīng)用的觀點(diǎn);
二.教學(xué)重點(diǎn):及其推論
三.教學(xué)難點(diǎn) :文字題的證明
四.教學(xué)用具:直尺,微機(jī)
五.教學(xué)方法:?jiǎn)栴}探究法
六.教學(xué)過程 :
1、 性質(zhì)定理的發(fā)現(xiàn)與證明
(1)投影顯示:
一般學(xué)生都能發(fā)現(xiàn)等腰三角形的兩個(gè)底角相等(若有其它發(fā)現(xiàn)也要給予肯定),
(2)提醒學(xué)生:憑觀察作出的判斷準(zhǔn)確嗎?怎樣證明你的判斷?
師生討論后,確定用全等三角形證明,學(xué)生親自動(dòng)手作出證明.證明略.
教師指出:定理提示了三角形邊與角的轉(zhuǎn)化關(guān)系,由兩邊相等轉(zhuǎn)化為兩角相等,這是今后證明兩角相等常用的依據(jù),其功效不亞于利用全等三角形證明兩角相等.
2、推論1的發(fā)現(xiàn)與證明
投影顯示:
由學(xué)生觀察發(fā)現(xiàn),等腰三角形頂角平分線平分底邊并且垂直于底邊.
啟發(fā)學(xué)生自己歸納得出:頂角平分線、底邊上的中線、底邊上的高互相重合.
學(xué)生口述證明過程.
教師指出:等腰三角形的頂角的平分線,底邊上的中線、底邊上的高這“三線合一”的性質(zhì)有多重功能,可以證明兩線段相等,兩個(gè)角相等以及兩條直線的互相垂直,也可證線段成角的倍分問題。
3、推論2的發(fā)現(xiàn)與證明
投影顯示:
一般學(xué)生都能發(fā)現(xiàn)等邊三角形的三個(gè)內(nèi)角都為 .然后啟發(fā)學(xué)生與等腰三角形的“三線合一”作類比,自己得出等邊三角形的“三線合一”.
4、定理及其推論的應(yīng)用
解:(1) (2)另外兩內(nèi)角分別為: (3)
小結(jié):滲透分類思想,培養(yǎng)思維的嚴(yán)密性.
例2、已知:如圖,點(diǎn)D、E在△ABC的邊BC上,AB=AC,AD=AE
求證:BD=CE
證明:作AF⊥BC,,垂足為F,則AF⊥DE
∵AB=AC,AD=AE(已知)
AF⊥BC,AF⊥DE(輔助線作法)
∴BF=CF,DF=EF(等腰三角形底邊上的高與底邊上的中線互相重合)
∴BD=CE
強(qiáng)調(diào)說明:等腰三角形中的“三線合一”常常作為解決等腰三角形問題的輔助線,添加輔助線時(shí),有時(shí)作頂角的平分線,有時(shí)作底邊中線,有時(shí)作底邊的高,有時(shí)作哪條線都可以,有時(shí)卻不能,還要根據(jù)實(shí)際情況來定.
例3、已知:如圖,D是等邊△ABC內(nèi)一點(diǎn),DB=DA,BP=AB, DBP= DBC
求證: P=
證明:連結(jié)OC
在△BPD和△BCD中
在△ADC和△BCD中
因此, P=
例4 求證:等腰三角形兩腰上中線的交點(diǎn)到底邊兩端點(diǎn)的距離相等
已知:如圖,AB=AC,BD、CE分別為AC邊、AB邊的中線,它們相交于F點(diǎn)
求證:BF=CF
證明:∵BD、CE是△ABC的兩條中線,AB=AC
∴AD=AE,BE=CD
在△ABD和△ACE中
∴△ABD≌△ACE
∴ 1= 2
在△BEF和△CED中
∴△BEF≌△CED
∴BF=FC
設(shè)想:例1到例4,由易到難地安排學(xué)生對(duì)新授內(nèi)容的練習(xí)和鞏固.在以上教學(xué)中,特別注意“一般解題方法”的運(yùn)用.
在四個(gè)例題的教學(xué)中,充分發(fā)揮學(xué)生與學(xué)生之間的互補(bǔ)性,從而提高認(rèn)識(shí),完善認(rèn)知結(jié)構(gòu),使課堂成為學(xué)生發(fā)揮想象力和創(chuàng)造性的“學(xué)堂”
5、反饋練習(xí):
出示圖形及題目:
將實(shí)際問題數(shù)學(xué)化,培養(yǎng)學(xué)生應(yīng)用能力。
6、課堂小結(jié):
教師引導(dǎo)學(xué)生小結(jié)
。1)、
。2)、等邊三角形的性質(zhì)
。3)、文字證明題的書寫步驟
7、布置作業(yè) :
a、 書面作業(yè) P96#1、2
b、 上交作業(yè) P96#4、7、8
c、 思考題:
已知:如圖:在△ABC中,AB=AC,E在CA的延長(zhǎng)線上,∠AEF=∠AFE.
求證:EF⊥BC
證明 : 作BC邊上的高AM,M為垂足
∵AM⊥BC
∴∠BAM=∠CAM
又∵∠BAC為△AEF的外角
∴∠BAC =∠E+∠EFA
即∠BAM+∠CAM=∠E=∠EFA
∵∠AEF=∠AFE
∴∠CAM=∠E
∴EF∥AM
∵AM⊥BC
∴EF⊥BC
七.板書設(shè)計(jì) :
等腰三角形的性質(zhì) 篇5
一、教學(xué)目的
使學(xué)生熟練地掌握等腰三角形的性質(zhì).
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):等腰三角形性質(zhì)的應(yīng)用.
難點(diǎn):添加合適的輔助線.
三、教學(xué)過程
復(fù)習(xí)提問
1 .等腰三角形的性質(zhì).
2.等腰三角形的底角一定是_角?
3.等腰三角形的底角為20°,求它的頂角度數(shù).
引入新課
等腰三角形一腰上的中線把它的周長(zhǎng)分為15cm和6cm的兩部分,求這三角形各邊的長(zhǎng).
學(xué)生可能利用算術(shù)的方法,計(jì)算出腰長(zhǎng)為10底邊長(zhǎng)為1.也可能算不出來,這里教師可作如下引導(dǎo):
在圖1中,AB=AC,D為AB的中點(diǎn)(即AD=DB),設(shè) AD=xcm,則 AB=AC=2cm(中線定義).由AC+AD=15cm,得
2x+x=15.
解得 x=5,……
本題是利用列方程的方法解得的,此法對(duì)于某些幾何計(jì)算題來說,簡(jiǎn)捷而有效.
新課
例2 已知:圖2,在△ABC中,AB=AC,點(diǎn)D在AC上,且 BD=BC=AD.求△ABC各角的度數(shù).
分析:欲求三角形各角度數(shù).只需求出∠A度數(shù),把∠A度數(shù)作為一個(gè)未知數(shù)x,則∠A=∠1=x°,∠2=∠A+∠1=2x°,∠ABC=∠C=∠2=2x°.應(yīng)用三角形內(nèi)角和定理于△ABC,求出方程所對(duì)應(yīng)的幾何等式:∠A+∠ABC+∠C=180°,即可得出關(guān)于x的方程.
例3 已知:如圖3,點(diǎn)D、E在△ABC的邊BC上,AB=AC,AD=AE.求證:BD=CE.
通過分析使學(xué)生發(fā)現(xiàn),要作AF⊥BC即底邊上的高這條輔助線(這是證明的關(guān)鍵所在),并告訴學(xué)生這是等腰三角形中一種常見的輔助線.利用這條輔助線就很容易證得結(jié)論.并說明,這是利用等腰三角形的“三線合一”性質(zhì)來證明的題目.
小結(jié)
1.列方程解幾何計(jì)算題是幾何計(jì)算題的一種重要解法,在這種解法中,尋求幾何等式(如例2中∠A+∠ABC+∠C=180°)是基礎(chǔ),把幾何等式的各項(xiàng)轉(zhuǎn)化為未知數(shù)x的代數(shù)式是關(guān)鍵(如∠A=x°,∠ABC=∠C=2x°).
2.對(duì)于等腰三角形的”三線合一”性要靈活運(yùn)用.
練習(xí):略
作業(yè) :略
思考題:例3中輔助線改為△ABC的頂角平分線AF,寫出證明過程.
四、教學(xué)注意問題
1.等腰三角形性質(zhì)的靈活、綜合應(yīng)用,防止依賴于全等三角形證明線段或角相等的思維定勢(shì).
2.要防止“三線合一”性在應(yīng)用中出現(xiàn)的錯(cuò)誤.
等腰三角形的性質(zhì) 篇6
知識(shí)結(jié)構(gòu)
重點(diǎn)與難點(diǎn)分析:
本節(jié)內(nèi)容的重點(diǎn)是及其推論。等腰三角形兩底角相等(等邊對(duì)等角)是證明同一三角形中兩角相等的重要依據(jù);而在推論中提到的等腰三角形底邊上的高、中線及頂角平分線三線合一這條重要性質(zhì)也是證明兩線段相等,兩個(gè)角相等及兩直線互相垂直的重要依據(jù)。為證明線段相等,角相等或垂直平提供了方法,在選擇時(shí)注意靈活運(yùn)用。
本節(jié)內(nèi)容的難點(diǎn)是文字題的證明。對(duì)文字題的證明,首先分析出命題的題設(shè)和結(jié)論,結(jié)合題意畫出草圖形,然后根據(jù)圖形寫出已知、求證,做到不重不漏,從而轉(zhuǎn)化為一般證明題。這些環(huán)節(jié)是學(xué)生感到困難的。
教法建議:
數(shù)學(xué)教學(xué)的核心是學(xué)生的“再創(chuàng)造”.根據(jù)這一指導(dǎo)思想,本節(jié)課教學(xué)可通過精心設(shè)置的一個(gè)個(gè)問題鏈,激發(fā)學(xué)生的求知欲,最終在老師的指導(dǎo)下發(fā)現(xiàn)問題、解決問題.為了充分調(diào)動(dòng)學(xué)生的積極性,使學(xué)生變被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí),本課教學(xué)擬用啟發(fā)式問題教學(xué)法.具體說明如下:
。1)發(fā)現(xiàn)問題
本節(jié)課開始,先投影顯示圖形及問題,讓學(xué)生觀察并發(fā)現(xiàn)結(jié)論。提出問題讓學(xué)生思考,創(chuàng)設(shè)問題情境,激發(fā)學(xué)生學(xué)習(xí)的欲望和要求.
(2)解決問題
對(duì)所得到的結(jié)論通過教師啟發(fā),讓學(xué)生完成證明.指導(dǎo)學(xué)生歸納總結(jié),從而順其自然得到本節(jié)課的一個(gè)定理及其兩個(gè)推論. 多讓學(xué)生親自實(shí)踐,參與探索發(fā)現(xiàn),領(lǐng)略知識(shí)形成過程,這是課堂教學(xué)的基本思想和教學(xué)理念.
。3)加深理解
學(xué)生學(xué)習(xí)的過程是對(duì)知識(shí)的消化和理解的過程,通過例題的解決,提高和完善對(duì)定理及其推論理解。這一過程采用講練結(jié)合、適時(shí)點(diǎn)撥的教學(xué)方法,把學(xué)生的注意力緊緊吸引在解決問題身上,讓學(xué)生的思維活動(dòng)在老師的引導(dǎo)下層層展開,讓學(xué)生大膽參與課堂教學(xué),使他們“聽”有所“思”、“練”有所“獲”,使傳授知識(shí)與培養(yǎng)能力融為一體。一.教學(xué)目標(biāo):
1.掌握定理的證明及這個(gè)定理的兩個(gè)推論;
2.會(huì)運(yùn)用證明線段相等;
3.使學(xué)生掌握一般文字題的證明;
4.通過文字題的證明,提高學(xué)生幾何三種語言的互譯能力;
5.逐步培養(yǎng)學(xué)生邏輯思維能力及分析實(shí)際問題解決問題的能力;
6.滲透對(duì)稱的數(shù)學(xué)思想,培養(yǎng)學(xué)生數(shù)學(xué)應(yīng)用的觀點(diǎn);
二.教學(xué)重點(diǎn):及其推論
三.教學(xué)難點(diǎn):文字題的證明
四.教學(xué)用具:直尺,微機(jī)
五.教學(xué)方法:?jiǎn)栴}探究法
六.教學(xué)過程:
1、 性質(zhì)定理的發(fā)現(xiàn)與證明
(1)投影顯示:
一般學(xué)生都能發(fā)現(xiàn)等腰三角形的兩個(gè)底角相等(若有其它發(fā)現(xiàn)也要給予肯定),
(2)提醒學(xué)生:憑觀察作出的判斷準(zhǔn)確嗎?怎樣證明你的判斷?
師生討論后,確定用全等三角形證明,學(xué)生親自動(dòng)手作出證明.證明略.
教師指出:定理提示了三角形邊與角的轉(zhuǎn)化關(guān)系,由兩邊相等轉(zhuǎn)化為兩角相等,這是今后證明兩角相等常用的依據(jù),其功效不亞于利用全等三角形證明兩角相等.
2、推論1的發(fā)現(xiàn)與證明
投影顯示:
由學(xué)生觀察發(fā)現(xiàn),等腰三角形頂角平分線平分底邊并且垂直于底邊.
啟發(fā)學(xué)生自己歸納得出:頂角平分線、底邊上的中線、底邊上的高互相重合.
學(xué)生口述證明過程.
教師指出:等腰三角形的頂角的平分線,底邊上的中線、底邊上的高這“三線合一”的性質(zhì)有多重功能,可以證明兩線段相等,兩個(gè)角相等以及兩條直線的互相垂直,也可證線段成角的倍分問題。
3、推論2的發(fā)現(xiàn)與證明
投影顯示:
一般學(xué)生都能發(fā)現(xiàn)等邊三角形的三個(gè)內(nèi)角都為 .然后啟發(fā)學(xué)生與等腰三角形的“三線合一”作類比,自己得出等邊三角形的“三線合一”.
4、定理及其推論的應(yīng)用
解:(1) (2)另外兩內(nèi)角分別為: (3)
小結(jié):滲透分類思想,培養(yǎng)思維的嚴(yán)密性.
例2、已知:如圖,點(diǎn)D、E在△ABC的邊BC上,AB=AC,AD=AE
求證:BD=CE
證明:作AF⊥BC,,垂足為F,則AF⊥DE
∵AB=AC,AD=AE(已知)
AF⊥BC,AF⊥DE(輔助線作法)
∴BF=CF,DF=EF(等腰三角形底邊上的高與底邊上的中線互相重合)
∴BD=CE
強(qiáng)調(diào)說明:等腰三角形中的“三線合一”常常作為解決等腰三角形問題的輔助線,添加輔助線時(shí),有時(shí)作頂角的平分線,有時(shí)作底邊中線,有時(shí)作底邊的高,有時(shí)作哪條線都可以,有時(shí)卻不能,還要根據(jù)實(shí)際情況來定.
第 1 2 頁
等腰三角形的性質(zhì) 篇7
知識(shí)結(jié)構(gòu)
重點(diǎn)與難點(diǎn)分析:
本節(jié)內(nèi)容的重點(diǎn)是及其推論。等腰三角形兩底角相等(等邊對(duì)等角)是證明同一三角形中兩角相等的重要依據(jù);而在推論中提到的等腰三角形底邊上的高、中線及頂角平分線三線合一這條重要性質(zhì)也是證明兩線段相等,兩個(gè)角相等及兩直線互相垂直的重要依據(jù)。為證明線段相等,角相等或垂直平提供了方法,在選擇時(shí)注意靈活運(yùn)用。
本節(jié)內(nèi)容的難點(diǎn)是文字題的證明。對(duì)文字題的證明,首先分析出命題的題設(shè)和結(jié)論,結(jié)合題意畫出草圖形,然后根據(jù)圖形寫出已知、求證,做到不重不漏,從而轉(zhuǎn)化為一般證明題。這些環(huán)節(jié)是學(xué)生感到困難的。
教法建議:
數(shù)學(xué)教學(xué)的核心是學(xué)生的“再創(chuàng)造”.根據(jù)這一指導(dǎo)思想,本節(jié)課教學(xué)可通過精心設(shè)置的一個(gè)個(gè)問題鏈,激發(fā)學(xué)生的求知欲,最終在老師的指導(dǎo)下發(fā)現(xiàn)問題、解決問題.為了充分調(diào)動(dòng)學(xué)生的積極性,使學(xué)生變被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí),本課教學(xué)擬用啟發(fā)式問題教學(xué)法.具體說明如下:
。1)發(fā)現(xiàn)問題
本節(jié)課開始,先投影顯示圖形及問題,讓學(xué)生觀察并發(fā)現(xiàn)結(jié)論。提出問題讓學(xué)生思考,創(chuàng)設(shè)問題情境,激發(fā)學(xué)生學(xué)習(xí)的欲望和要求.
。2)解決問題
對(duì)所得到的結(jié)論通過教師啟發(fā),讓學(xué)生完成證明.指導(dǎo)學(xué)生歸納總結(jié),從而順其自然得到本節(jié)課的一個(gè)定理及其兩個(gè)推論. 多讓學(xué)生親自實(shí)踐,參與探索發(fā)現(xiàn),領(lǐng)略知識(shí)形成過程,這是課堂教學(xué)的基本思想和教學(xué)理念.
。3)加深理解
學(xué)生學(xué)習(xí)的過程是對(duì)知識(shí)的消化和理解的過程,通過例題的解決,提高和完善對(duì)定理及其推論理解。這一過程采用講練結(jié)合、適時(shí)點(diǎn)撥的教學(xué)方法,把學(xué)生的注意力緊緊吸引在解決問題身上,讓學(xué)生的思維活動(dòng)在老師的引導(dǎo)下層層展開,讓學(xué)生大膽參與課堂教學(xué),使他們“聽”有所“思”、“練”有所“獲”,使傳授知識(shí)與培養(yǎng)能力融為一體。一.教學(xué)目標(biāo):
1.掌握定理的證明及這個(gè)定理的兩個(gè)推論;
2.會(huì)運(yùn)用證明線段相等;
3.使學(xué)生掌握一般文字題的證明;
4.通過文字題的證明,提高學(xué)生幾何三種語言的互譯能力;
5.逐步培養(yǎng)學(xué)生邏輯思維能力及分析實(shí)際問題解決問題的能力;
6.滲透對(duì)稱的數(shù)學(xué)思想,培養(yǎng)學(xué)生數(shù)學(xué)應(yīng)用的觀點(diǎn);
二.教學(xué)重點(diǎn):及其推論
三.教學(xué)難點(diǎn):文字題的證明
四.教學(xué)用具:直尺,微機(jī)
五.教學(xué)方法:?jiǎn)栴}探究法
六.教學(xué)過程:
1、 性質(zhì)定理的發(fā)現(xiàn)與證明
(1)投影顯示:
一般學(xué)生都能發(fā)現(xiàn)等腰三角形的兩個(gè)底角相等(若有其它發(fā)現(xiàn)也要給予肯定),
(2)提醒學(xué)生:憑觀察作出的判斷準(zhǔn)確嗎?怎樣證明你的判斷?
師生討論后,確定用全等三角形證明,學(xué)生親自動(dòng)手作出證明.證明略.
教師指出:定理提示了三角形邊與角的轉(zhuǎn)化關(guān)系,由兩邊相等轉(zhuǎn)化為兩角相等,這是今后證明兩角相等常用的依據(jù),其功效不亞于利用全等三角形證明兩角相等.
2、推論1的發(fā)現(xiàn)與證明
投影顯示:
由學(xué)生觀察發(fā)現(xiàn),等腰三角形頂角平分線平分底邊并且垂直于底邊.
啟發(fā)學(xué)生自己歸納得出:頂角平分線、底邊上的中線、底邊上的高互相重合.
學(xué)生口述證明過程.
教師指出:等腰三角形的頂角的平分線,底邊上的中線、底邊上的高這“三線合一”的性質(zhì)有多重功能,可以證明兩線段相等,兩個(gè)角相等以及兩條直線的互相垂直,也可證線段成角的倍分問題。
3、推論2的發(fā)現(xiàn)與證明
投影顯示:
一般學(xué)生都能發(fā)現(xiàn)等邊三角形的三個(gè)內(nèi)角都為 .然后啟發(fā)學(xué)生與等腰三角形的“三線合一”作類比,自己得出等邊三角形的“三線合一”.
4、定理及其推論的應(yīng)用
解:(1) (2)另外兩內(nèi)角分別為: (3)
小結(jié):滲透分類思想,培養(yǎng)思維的嚴(yán)密性.
例2、已知:如圖,點(diǎn)D、E在△ABC的邊BC上,AB=AC,AD=AE
求證:BD=CE
證明:作AF⊥BC,,垂足為F,則AF⊥DE
∵AB=AC,AD=AE(已知)
AF⊥BC,AF⊥DE(輔助線作法)
∴BF=CF,DF=EF(等腰三角形底邊上的高與底邊上的中線互相重合)
∴BD=CE
強(qiáng)調(diào)說明:等腰三角形中的“三線合一”常常作為解決等腰三角形問題的輔助線,添加輔助線時(shí),有時(shí)作頂角的平分線,有時(shí)作底邊中線,有時(shí)作底邊的高,有時(shí)作哪條線都可以,有時(shí)卻不能,還要根據(jù)實(shí)際情況來定.
例3、已知:如圖,D是等邊△ABC內(nèi)一點(diǎn),DB=DA,BP=AB, DBP= DBC
求證: P=
證明:連結(jié)OC
在△BPD和△BCD中
在△ADC和△BCD中
因此, P=
例4 求證:等腰三角形兩腰上中線的交點(diǎn)到底邊兩端點(diǎn)的距離相等
已知:如圖,AB=AC,BD、CE分別為AC邊、AB邊的中線,它們相交于F點(diǎn)
求證:BF=CF
證明:∵BD、CE是△ABC的兩條中線,AB=AC
∴AD=AE,BE=CD
在△ABD和△ACE中
∴△ABD≌△ACE
∴ 1= 2
在△BEF和△CED中
∴△BEF≌△CED
∴BF=FC
設(shè)想:例1到例4,由易到難地安排學(xué)生對(duì)新授內(nèi)容的練習(xí)和鞏固.在以上教學(xué)中,特別注意“一般解題方法”的運(yùn)用.
在四個(gè)例題的教學(xué)中,充分發(fā)揮學(xué)生與學(xué)生之間的互補(bǔ)性,從而提高認(rèn)識(shí),完善認(rèn)知結(jié)構(gòu),使課堂成為學(xué)生發(fā)揮想象力和創(chuàng)造性的“學(xué)堂”
5、反饋練習(xí):
出示圖形及題目:
將實(shí)際問題數(shù)學(xué)化,培養(yǎng)學(xué)生應(yīng)用能力。
6、課堂小結(jié):
教師引導(dǎo)學(xué)生小結(jié)
。1)、
。2)、等邊三角形的性質(zhì)
。3)、文字證明題的書寫步驟
7、布置作業(yè) :
a、 書面作業(yè) P96#1、2
b、 上交作業(yè) P96#4、7、8
c、 思考題:
已知:如圖:在△ABC中,AB=AC,E在CA的延長(zhǎng)線上,∠AEF=∠AFE.
求證:EF⊥BC
證明 : 作BC邊上的高AM,M為垂足
∵AM⊥BC
∴∠BAM=∠CAM
又∵∠BAC為△AEF的外角
∴∠BAC =∠E+∠EFA
即∠BAM+∠CAM=∠E=∠EFA
∵∠AEF=∠AFE
∴∠CAM=∠E
∴EF∥AM
∵AM⊥BC
∴EF⊥BC
七.板書設(shè)計(jì):
等腰三角形的性質(zhì) 篇8
等腰三角形的性質(zhì)
幾何第二冊(cè)第三章,3.12第2——4頁
教學(xué)目標(biāo)
(1)知識(shí)目標(biāo):1、掌握等腰三角形的兩底角相等,底邊上的高、
中線及頂角平分線三線合一的性質(zhì),并能運(yùn)用
它們進(jìn)行有關(guān)的論證和計(jì)算。
2、理解等腰三角形和等邊三角形性質(zhì)定理之間
的聯(lián)系。
(2)能力目標(biāo):1、定理的引入培養(yǎng)學(xué)生對(duì)命題的抽象概括能力,
加強(qiáng)發(fā)散思維的訓(xùn)練。
2、定理的證明培養(yǎng)大膽創(chuàng)新、敢于求異、勇于
探索的精神和能力,形成良好的思維品質(zhì)。
3、定理的應(yīng)用,培養(yǎng)學(xué)生進(jìn)行獨(dú)立思考,提高獨(dú)
立解決問題的能力。
(3)情感目標(biāo):在教學(xué)過程 中,引導(dǎo)學(xué)生進(jìn)行規(guī)律的再發(fā)現(xiàn),激發(fā)
學(xué)生的審美情感,與現(xiàn)實(shí)生活有關(guān)的實(shí)際問題使
學(xué)生認(rèn)識(shí)到數(shù)學(xué)對(duì)于外部世界的完善與和諧,使
他們有效地獲取真知,發(fā)展理性。
教學(xué)重點(diǎn) 等腰三角形的性質(zhì)定理及其證明。
教學(xué)難點(diǎn) 用文字語言敘述的幾何命題的證明及輔助線的添加。
達(dá)標(biāo)進(jìn)程
教學(xué)內(nèi)容
教師活動(dòng)
學(xué)生活動(dòng)
一、 前置診斷,開辟道路
1、什么樣的三角形叫做等腰三角形?2、指出等腰三角形的腰、底邊、頂角、底角。
首先教師提問了解前置知識(shí)掌握情況。
動(dòng)腦思考、口答。
二、 構(gòu)設(shè)懸念,創(chuàng)設(shè)情境
1、一般三角形有哪些性質(zhì)?
2、等腰三角形除具有一般三角形的性質(zhì)外,還有那些特殊性質(zhì)?
把問題作為教學(xué)的出發(fā)點(diǎn),激發(fā)學(xué)生的學(xué)習(xí)興趣。
問題2給學(xué)生留下懸念。
三、 目標(biāo)導(dǎo)向,自然引入
本節(jié)課我們一起研究——等腰三角形的性質(zhì)。
板書課題
了解本節(jié)課的學(xué)習(xí)內(nèi)容。
四、 設(shè)問質(zhì)疑,探究嘗試
請(qǐng)同學(xué)們拿出準(zhǔn)備好的等腰三角形,與教師一起按照要求,把兩腰疊在一起。
[問題]通過觀察,你發(fā)現(xiàn)了什么結(jié)論?
[結(jié)論]等腰三角形的兩個(gè)底角相等。
板書學(xué)生發(fā)現(xiàn)的結(jié)論。
[問題]可由學(xué)生從多種途徑思考,縱橫聯(lián)想所學(xué)知識(shí)方法,為命題的證明打下基礎(chǔ)。
[辨疑]由觀察發(fā)現(xiàn)的命題不一定是真命題,需要證明,怎樣證明?
[問題]1、此命題的題設(shè)、結(jié)論分別是什么?
2、怎樣寫出已知、求證?
3、怎樣證明?
[電腦演示1]
[投影學(xué)生證明過程,并由其講述]
從而引出定理 等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫成“等邊對(duì)等角”)
通過電腦演示,引導(dǎo)學(xué)生全面觀察,聯(lián)想,突破引輔助線的難關(guān),并向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想。
引出學(xué)生探究心理,迅速集中注意力,使其帶著濃厚的興趣開始積極探索思考。
繼續(xù)觀察圖形
[問題]1、指出全等三角形中還有哪些
對(duì)應(yīng)邊、對(duì)應(yīng)角相等?
2、等腰三角形的頂角的平分線又有什么性質(zhì)?
設(shè)問、質(zhì)疑
小組討論,歸納總結(jié),培養(yǎng)學(xué)生概括數(shù)學(xué)材料的能力。
教學(xué)內(nèi)容
教師活動(dòng)
學(xué)生活動(dòng)
[辨疑]一般三角形是否具有這一性質(zhì)呢?
[電腦演示2]
從而引出推論1 等腰三角形頂角的平分線平分底邊,并且垂直于底邊.
“三線合一”性質(zhì) 等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。
[填空]根據(jù)等腰三角形性質(zhì)定理的推論,在△ABC中
。1)∵AB=AC,AD⊥BC,
∴∠_=∠_,_=_;
(2)∵AB=AC,AD是中線,
∴∠_=∠_,_⊥_;
。3)∵AB=AC,AD是角平分線,
∴_⊥_,_=_。
通過電腦演示,引出推論1,并引入[填空]、強(qiáng)調(diào)推論1的運(yùn)用方法。
電腦演示給學(xué)生對(duì)推掄1留下深刻印象,并通過[填空]了解推論1的運(yùn)用方法。
五、 變式訓(xùn)練,鞏固提高
達(dá)標(biāo)練習(xí)一
A組:根據(jù)等腰三角的形性質(zhì)定理
(1)等腰直角三角形的每一個(gè)銳角都等于多少度?
(2)若等腰三角形的頂角為40°,
則它的底角為多少度?
(3)若等腰三角形的一個(gè)底角為 40°,則它的頂角為多少度?
B組:根據(jù)等腰三角形的性質(zhì)定理
(1)若等腰三角形的一個(gè)內(nèi)角為 40°,則它的其余各角為多少度?
(2) 若等腰三角形的一個(gè)內(nèi)角為120°,則它的其余各角為多少度?
(3)等邊三角形的三個(gè)內(nèi)角有什么關(guān)系?各等于多少度?
從而引出推論2 等邊三角形的各角都相等,并且每一個(gè)角都等于60°.
題目設(shè)計(jì)遵循由易到難的原則,引導(dǎo)學(xué)生拾階而上。溝通等腰三角形的性質(zhì)定理和三角形內(nèi)角和定理的聯(lián)系,并引出推論2。
A組口答練習(xí)
B組討論后回答。
掌握等腰三角形性質(zhì)定理的應(yīng)用,訓(xùn)練學(xué)生的類比思維,讓學(xué)生獲得從問題中探索共同的屬性和規(guī)律的思維能力。
教學(xué)內(nèi)容
教師活動(dòng)
學(xué)生活動(dòng)
達(dá)標(biāo)練習(xí)二
A組:等腰三角形斜邊上的高把直角分成兩個(gè)角,求這兩個(gè)角的度數(shù)。
B組:已知:如圖,房屋的頂角 ∠BAC=100°。求頂架上∠B、∠C、
∠BAD、∠CAD的度數(shù)。
理論聯(lián)系實(shí)際,
充分體現(xiàn)數(shù)學(xué)解決實(shí)際問題的作用,培養(yǎng)學(xué)生的應(yīng)用意識(shí),提高數(shù)學(xué)修養(yǎng)。
A組口答
B組獨(dú)立解答.
加深理解定理及推論1,能初步靈活地運(yùn)用它們進(jìn)行計(jì)算和論證。
布置作業(yè) :1、看書:P1——P3
2、課本P5 想一想
教案設(shè)計(jì)說明
本節(jié)課是在學(xué)生掌握了一般三角形基礎(chǔ)知識(shí)和初步推論證明的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,擔(dān)負(fù)著訓(xùn)練學(xué)生會(huì)分析證明思路的任務(wù),等腰三角形兩底角相等的性質(zhì)是今后論證兩角相等的依據(jù)之一,等腰三角形底邊上的三條主要線段重合的性質(zhì)是今后論證兩條線段相等、兩個(gè)角相等及兩條直線垂直的重要依據(jù)。因此設(shè)計(jì)時(shí),我分別從幾個(gè)方面作了精心策劃:
1、創(chuàng)設(shè)豐富的舊知環(huán)境,有利于幫助學(xué)生找準(zhǔn)新舊知識(shí)的連接點(diǎn),喚起與形成新知相關(guān)的舊知,從而使學(xué)生的原認(rèn)知結(jié)構(gòu)對(duì)新知的學(xué)習(xí)具有某種“召喚力”。
2、提供可探索性的問題,合理的設(shè)計(jì)實(shí)驗(yàn)過程,創(chuàng)造出良好的問題情境,不斷地引導(dǎo)學(xué)生觀察、實(shí)驗(yàn)、思考、探索,使學(xué)生感到自己就象科學(xué)家那樣提出問題、分析問題、解決問題,去發(fā)現(xiàn)規(guī)律,證實(shí)結(jié)論。發(fā)揮學(xué)生學(xué)習(xí)的主觀能動(dòng)性,培養(yǎng)學(xué)生的探索能力、科學(xué)的研究方法、實(shí)事求是的態(tài)度。
3、在鞏固應(yīng)用時(shí),訓(xùn)練題組的設(shè)計(jì)具有階梯性,加強(qiáng)了變式訓(xùn)練,便于及時(shí)反饋。實(shí)際應(yīng)用充分體現(xiàn)了數(shù)學(xué)解決實(shí)際問題的作用,培養(yǎng)學(xué)生的應(yīng)用意識(shí),提高數(shù)學(xué)修養(yǎng)。
4、利用直觀教具及電化教學(xué)手段,創(chuàng)設(shè)了豐富的課堂教學(xué)環(huán)境,觸發(fā)學(xué)生求知心向的生成,自覺地努力調(diào)集思維和舊知紛紛指向新知,成為學(xué)習(xí)活動(dòng)的“催化劑”、“助推器”。
威海市經(jīng)濟(jì)技術(shù)開發(fā)區(qū)皇冠中學(xué) 叢燕燕
2000年4月
等腰三角形的性質(zhì)
教 案
威海市經(jīng)濟(jì)技術(shù)開發(fā)區(qū)皇冠中學(xué)
叢燕燕
二O O O年四月
------------------------------------------------------------
相關(guān)專題: 初中數(shù)學(xué)
專題信息:
九年級(jí)(上)第一章(證明二)單元測(cè)試卷1(2004-10-12 12:48:49)[1300]
等腰三角形的性質(zhì)
幾何第二冊(cè)第三章,3.12第2——4頁
教學(xué)目標(biāo)
(1)知識(shí)目標(biāo):1、掌握等腰三角形的兩底角相等,底邊上的高、
中線及頂角平分線三線合一的性質(zhì),并能運(yùn)用
它們進(jìn)行有關(guān)的論證和計(jì)算。
2、理解等腰三角形和等邊三角形性質(zhì)定理之間
的聯(lián)系。
(2)能力目標(biāo):1、定理的引入培養(yǎng)學(xué)生對(duì)命題的抽象概括能力,
加強(qiáng)發(fā)散思維的訓(xùn)練。
2、定理的證明培養(yǎng)大膽創(chuàng)新、敢于求異、勇于
探索的精神和能力,形成良好的思維品質(zhì)。
3、定理的應(yīng)用,培養(yǎng)學(xué)生進(jìn)行獨(dú)立思考,提高獨(dú)
立解決問題的能力。
(3)情感目標(biāo):在教學(xué)過程 中,引導(dǎo)學(xué)生進(jìn)行規(guī)律的再發(fā)現(xiàn),激發(fā)
學(xué)生的審美情感,與現(xiàn)實(shí)生活有關(guān)的實(shí)際問題使
學(xué)生認(rèn)識(shí)到數(shù)學(xué)對(duì)于外部世界的完善與和諧,使
他們有效地獲取真知,發(fā)展理性。
教學(xué)重點(diǎn) 等腰三角形的性質(zhì)定理及其證明。
教學(xué)難點(diǎn) 用文字語言敘述的幾何命題的證明及輔助線的添加。
達(dá)標(biāo)進(jìn)程
教學(xué)內(nèi)容
教師活動(dòng)
學(xué)生活動(dòng)
一、 前置診斷,開辟道路
1、什么樣的三角形叫做等腰三角形?2、指出等腰三角形的腰、底邊、頂角、底角。
首先教師提問了解前置知識(shí)掌握情況。
動(dòng)腦思考、口答。
二、 構(gòu)設(shè)懸念,創(chuàng)設(shè)情境
1、一般三角形有哪些性質(zhì)?
2、等腰三角形除具有一般三角形的性質(zhì)外,還有那些特殊性質(zhì)?
把問題作為教學(xué)的出發(fā)點(diǎn),激發(fā)學(xué)生的學(xué)習(xí)興趣。
問題2給學(xué)生留下懸念。
三、 目標(biāo)導(dǎo)向,自然引入
本節(jié)課我們一起研究——等腰三角形的性質(zhì)。
板書課題
了解本節(jié)課的學(xué)習(xí)內(nèi)容。
四、 設(shè)問質(zhì)疑,探究嘗試
請(qǐng)同學(xué)們拿出準(zhǔn)備好的等腰三角形,與教師一起按照要求,把兩腰疊在一起。
[問題]通過觀察,你發(fā)現(xiàn)了什么結(jié)論?
[結(jié)論]等腰三角形的兩個(gè)底角相等。
板書學(xué)生發(fā)現(xiàn)的結(jié)論。
[問題]可由學(xué)生從多種途徑思考,縱橫聯(lián)想所學(xué)知識(shí)方法,為命題的證明打下基礎(chǔ)。
[辨疑]由觀察發(fā)現(xiàn)的命題不一定是真命題,需要證明,怎樣證明?
[問題]1、此命題的題設(shè)、結(jié)論分別是什么?
2、怎樣寫出已知、求證?
3、怎樣證明?
[電腦演示1]
[投影學(xué)生證明過程,并由其講述]
從而引出定理 等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫成“等邊對(duì)等角”)
通過電腦演示,引導(dǎo)學(xué)生全面觀察,聯(lián)想,突破引輔助線的難關(guān),并向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想。
引出學(xué)生探究心理,迅速集中注意力,使其帶著濃厚的興趣開始積極探索思考。
繼續(xù)觀察圖形
[問題]1、指出全等三角形中還有哪些
對(duì)應(yīng)邊、對(duì)應(yīng)角相等?
2、等腰三角形的頂角的平分線又有什么性質(zhì)?
設(shè)問、質(zhì)疑
小組討論,歸納總結(jié),培養(yǎng)學(xué)生概括數(shù)學(xué)材料的能力。
教學(xué)內(nèi)容
教師活動(dòng)
學(xué)生活動(dòng)
[辨疑]一般三角形是否具有這一性質(zhì)呢?
[電腦演示2]
從而引出推論1 等腰三角形頂角的平分線平分底邊,并且垂直于底邊.
“三線合一”性質(zhì) 等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。
[填空]根據(jù)等腰三角形性質(zhì)定理的推論,在△ABC中
。1)∵AB=AC,AD⊥BC,
∴∠_=∠_,_=_;
。2)∵AB=AC,AD是中線,
∴∠_=∠_,_⊥_;
(3)∵AB=AC,AD是角平分線,
∴_⊥_,_=_。
通過電腦演示,引出推論1,并引入[填空]、強(qiáng)調(diào)推論1的運(yùn)用方法。
電腦演示給學(xué)生對(duì)推掄1留下深刻印象,并通過[填空]了解推論1的運(yùn)用方法。
五、 變式訓(xùn)練,鞏固提高
達(dá)標(biāo)練習(xí)一
A組:根據(jù)等腰三角的形性質(zhì)定理
(1)等腰直角三角形的每一個(gè)銳角都等于多少度?
(2)若等腰三角形的頂角為40°,
則它的底角為多少度?
(3)若等腰三角形的一個(gè)底角為 40°,則它的頂角為多少度?
B組:根據(jù)等腰三角形的性質(zhì)定理
(1)若等腰三角形的一個(gè)內(nèi)角為 40°,則它的其余各角為多少度?
(2) 若等腰三角形的一個(gè)內(nèi)角為120°,則它的其余各角為多少度?
(3)等邊三角形的三個(gè)內(nèi)角有什么關(guān)系?各等于多少度?
從而引出推論2 等邊三角形的各角都相等,并且每一個(gè)角都等于60°.
題目設(shè)計(jì)遵循由易到難的原則,引導(dǎo)學(xué)生拾階而上。溝通等腰三角形的性質(zhì)定理和三角形內(nèi)角和定理的聯(lián)系,并引出推論2。
A組口答練習(xí)
B組討論后回答。
掌握等腰三角形性質(zhì)定理的應(yīng)用,訓(xùn)練學(xué)生的類比思維,讓學(xué)生獲得從問題中探索共同的屬性和規(guī)律的思維能力。
教學(xué)內(nèi)容
教師活動(dòng)
學(xué)生活動(dòng)
達(dá)標(biāo)練習(xí)二
A組:等腰三角形斜邊上的高把直角分成兩個(gè)角,求這兩個(gè)角的度數(shù)。
B組:已知:如圖,房屋的頂角 ∠BAC=100°。求頂架上∠B、∠C、
∠BAD、∠CAD的度數(shù)。
理論聯(lián)系實(shí)際,
充分體現(xiàn)數(shù)學(xué)解決實(shí)際問題的作用,培養(yǎng)學(xué)生的應(yīng)用意識(shí),提高數(shù)學(xué)修養(yǎng)。
A組口答
B組獨(dú)立解答.
加深理解定理及推論1,能初步靈活地運(yùn)用它們進(jìn)行計(jì)算和論證。
布置作業(yè) :1、看書:P1——P3
2、課本P5 想一想
教案設(shè)計(jì)說明
本節(jié)課是在學(xué)生掌握了一般三角形基礎(chǔ)知識(shí)和初步推論證明的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,擔(dān)負(fù)著訓(xùn)練學(xué)生會(huì)分析證明思路的任務(wù),等腰三角形兩底角相等的性質(zhì)是今后論證兩角相等的依據(jù)之一,等腰三角形底邊上的三條主要線段重合的性質(zhì)是今后論證兩條線段相等、兩個(gè)角相等及兩條直線垂直的重要依據(jù)。因此設(shè)計(jì)時(shí),我分別從幾個(gè)方面作了精心策劃:
1、創(chuàng)設(shè)豐富的舊知環(huán)境,有利于幫助學(xué)生找準(zhǔn)新舊知識(shí)的連接點(diǎn),喚起與形成新知相關(guān)的舊知,從而使學(xué)生的原認(rèn)知結(jié)構(gòu)對(duì)新知的學(xué)習(xí)具有某種“召喚力”。
2、提供可探索性的問題,合理的設(shè)計(jì)實(shí)驗(yàn)過程,創(chuàng)造出良好的問題情境,不斷地引導(dǎo)學(xué)生觀察、實(shí)驗(yàn)、思考、探索,使學(xué)生感到自己就象科學(xué)家那樣提出問題、分析問題、解決問題,去發(fā)現(xiàn)規(guī)律,證實(shí)結(jié)論。發(fā)揮學(xué)生學(xué)習(xí)的主觀能動(dòng)性,培養(yǎng)學(xué)生的探索能力、科學(xué)的研究方法、實(shí)事求是的態(tài)度。
3、在鞏固應(yīng)用時(shí),訓(xùn)練題組的設(shè)計(jì)具有階梯性,加強(qiáng)了變式訓(xùn)練,便于及時(shí)反饋。實(shí)際應(yīng)用充分體現(xiàn)了數(shù)學(xué)解決實(shí)際問題的作用,培養(yǎng)學(xué)生的應(yīng)用意識(shí),提高數(shù)學(xué)修養(yǎng)。
4、利用直觀教具及電化教學(xué)手段,創(chuàng)設(shè)了豐富的課堂教學(xué)環(huán)境,觸發(fā)學(xué)生求知心向的生成,自覺地努力調(diào)集思維和舊知紛紛指向新知,成為學(xué)習(xí)活動(dòng)的“催化劑”、“助推器”。
威海市經(jīng)濟(jì)技術(shù)開發(fā)區(qū)皇冠中學(xué) 叢燕燕
2000年4月
等腰三角形的性質(zhì)
教 案
威海市經(jīng)濟(jì)技術(shù)開發(fā)區(qū)皇冠中學(xué)
叢燕燕
二O O O年四月
------------------------------------------------------------
相關(guān)專題: 初中數(shù)學(xué)
專題信息:
九年級(jí)(上)第一章(證明二)單元測(cè)試卷1(2004-10-12 12:48:49)[1300]
等腰三角形的性質(zhì) 篇9
本人在等腰三角形性質(zhì)(第三課時(shí))的教學(xué)中,教學(xué)方法是采用“目標(biāo)--問題”的教學(xué)方法,力求體現(xiàn)“主體參與、自主探索、合作交流、指導(dǎo)引探”的教學(xué)理念。本著“問題是數(shù)學(xué)的心臟”原則,精心設(shè)計(jì)了一些問題,在教學(xué)過程中有半數(shù)的學(xué)生回答了教師的提問,但礙于教學(xué)計(jì)劃,有的問題在答問過程中還不時(shí)得到本人的提醒,這樣導(dǎo)致的結(jié)果是難于發(fā)現(xiàn)學(xué)生真實(shí)的思維過程!岸嗵釂枴惫倘挥欣趯W(xué)生思考和理解知識(shí),有利于了解學(xué)生掌握知識(shí)的程度。但在倡導(dǎo)培養(yǎng)創(chuàng)新精神和實(shí)踐能力的今天,更要重視對(duì)學(xué)生問題意識(shí)的培養(yǎng)。問起于疑,疑源于思,課堂上教師要為學(xué)生質(zhì)疑創(chuàng)造足夠的空間和時(shí)間。目標(biāo)--問題教學(xué)法的本質(zhì)在于:在問題解決過程中培養(yǎng)學(xué)生問題意識(shí)和發(fā)現(xiàn)問題、提出問題的能力。令人遺憾的是本節(jié)課由于教學(xué)設(shè)計(jì)中留給學(xué)生的時(shí)間和空間偏少,導(dǎo)致學(xué)生發(fā)現(xiàn)問題、提出問題太少,長(zhǎng)此以往的“后遺癥”是學(xué)生問題意識(shí)的淡化。而在探索問題的關(guān)鍵時(shí)候,本人也缺乏耐心急于把思路給出,這是缺乏對(duì)學(xué)生的信任,學(xué)生將因此產(chǎn)生思維惰性。
教學(xué)永遠(yuǎn)是一門遺憾的藝術(shù),吹盡黃沙始現(xiàn)金,我們只有以“沒有最好,力求更好”來不斷改進(jìn)我們的教學(xué),才能實(shí)現(xiàn)真正意義上的與時(shí)俱進(jìn)。
等腰三角形的性質(zhì) 篇10
等腰三角形的性質(zhì)
幾何第二冊(cè)第三章,3.12第2——4頁
教學(xué)目標(biāo)
(1)知識(shí)目標(biāo):1、掌握等腰三角形的兩底角相等,底邊上的高、
中線及頂角平分線三線合一的性質(zhì),并能運(yùn)用
它們進(jìn)行有關(guān)的論證和計(jì)算。
2、理解等腰三角形和等邊三角形性質(zhì)定理之間
的聯(lián)系。
(2)能力目標(biāo):1、定理的引入培養(yǎng)學(xué)生對(duì)命題的抽象概括能力,
加強(qiáng)發(fā)散思維的訓(xùn)練。
2、定理的證明培養(yǎng)大膽創(chuàng)新、敢于求異、勇于
探索的精神和能力,形成良好的思維品質(zhì)。
3、定理的應(yīng)用,培養(yǎng)學(xué)生進(jìn)行獨(dú)立思考,提高獨(dú)
立解決問題的能力。
(3)情感目標(biāo):在教學(xué)過程 中,引導(dǎo)學(xué)生進(jìn)行規(guī)律的再發(fā)現(xiàn),激發(fā)
學(xué)生的審美情感,與現(xiàn)實(shí)生活有關(guān)的實(shí)際問題使
學(xué)生認(rèn)識(shí)到數(shù)學(xué)對(duì)于外部世界的完善與和諧,使
他們有效地獲取真知,發(fā)展理性。
教學(xué)重點(diǎn) 等腰三角形的性質(zhì)定理及其證明。
教學(xué)難點(diǎn) 用文字語言敘述的幾何命題的證明及輔助線的添加。
達(dá)標(biāo)進(jìn)程
教學(xué)內(nèi)容
教師活動(dòng)
學(xué)生活動(dòng)
一、 前置診斷,開辟道路
1、什么樣的三角形叫做等腰三角形?2、指出等腰三角形的腰、底邊、頂角、底角。
首先教師提問了解前置知識(shí)掌握情況。
動(dòng)腦思考、口答。
二、 構(gòu)設(shè)懸念,創(chuàng)設(shè)情境
1、一般三角形有哪些性質(zhì)?
2、等腰三角形除具有一般三角形的性質(zhì)外,還有那些特殊性質(zhì)?
把問題作為教學(xué)的出發(fā)點(diǎn),激發(fā)學(xué)生的學(xué)習(xí)興趣。
問題2給學(xué)生留下懸念。
三、 目標(biāo)導(dǎo)向,自然引入
本節(jié)課我們一起研究——等腰三角形的性質(zhì)。
板書課題
了解本節(jié)課的學(xué)習(xí)內(nèi)容。
四、 設(shè)問質(zhì)疑,探究嘗試
請(qǐng)同學(xué)們拿出準(zhǔn)備好的等腰三角形,與教師一起按照要求,把兩腰疊在一起。
[問題]通過觀察,你發(fā)現(xiàn)了什么結(jié)論?
[結(jié)論]等腰三角形的兩個(gè)底角相等。
板書學(xué)生發(fā)現(xiàn)的結(jié)論。
[問題]可由學(xué)生從多種途徑思考,縱橫聯(lián)想所學(xué)知識(shí)方法,為命題的證明打下基礎(chǔ)。
[辨疑]由觀察發(fā)現(xiàn)的命題不一定是真命題,需要證明,怎樣證明?
[問題]1、此命題的題設(shè)、結(jié)論分別是什么?
2、怎樣寫出已知、求證?
3、怎樣證明?
[電腦演示1]
[投影學(xué)生證明過程,并由其講述]
從而引出定理 等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫成“等邊對(duì)等角”)
通過電腦演示,引導(dǎo)學(xué)生全面觀察,聯(lián)想,突破引輔助線的難關(guān),并向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想。
引出學(xué)生探究心理,迅速集中注意力,使其帶著濃厚的興趣開始積極探索思考。
繼續(xù)觀察圖形
[問題]1、指出全等三角形中還有哪些
對(duì)應(yīng)邊、對(duì)應(yīng)角相等?
2、等腰三角形的頂角的平分線又有什么性質(zhì)?
設(shè)問、質(zhì)疑
小組討論,歸納總結(jié),培養(yǎng)學(xué)生概括數(shù)學(xué)材料的能力。
教學(xué)內(nèi)容
教師活動(dòng)
學(xué)生活動(dòng)
[辨疑]一般三角形是否具有這一性質(zhì)呢?
[電腦演示2]
從而引出推論1 等腰三角形頂角的平分線平分底邊,并且垂直于底邊.
“三線合一”性質(zhì) 等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。
[填空]根據(jù)等腰三角形性質(zhì)定理的推論,在△ABC中
。1)∵AB=AC,AD⊥BC,
∴∠_=∠_,_=_;
。2)∵AB=AC,AD是中線,
∴∠_=∠_,_⊥_;
。3)∵AB=AC,AD是角平分線,
∴_⊥_,_=_。
通過電腦演示,引出推論1,并引入[填空]、強(qiáng)調(diào)推論1的運(yùn)用方法。
電腦演示給學(xué)生對(duì)推掄1留下深刻印象,并通過[填空]了解推論1的運(yùn)用方法。
五、 變式訓(xùn)練,鞏固提高
達(dá)標(biāo)練習(xí)一
A組:根據(jù)等腰三角的形性質(zhì)定理
(1)等腰直角三角形的每一個(gè)銳角都等于多少度?
(2)若等腰三角形的頂角為40°,
則它的底角為多少度?
(3)若等腰三角形的一個(gè)底角為 40°,則它的頂角為多少度?
B組:根據(jù)等腰三角形的性質(zhì)定理
(1)若等腰三角形的一個(gè)內(nèi)角為 40°,則它的其余各角為多少度?
(2) 若等腰三角形的一個(gè)內(nèi)角為120°,則它的其余各角為多少度?
(3)等邊三角形的三個(gè)內(nèi)角有什么關(guān)系?各等于多少度?
從而引出推論2 等邊三角形的各角都相等,并且每一個(gè)角都等于60°.
題目設(shè)計(jì)遵循由易到難的原則,引導(dǎo)學(xué)生拾階而上。溝通等腰三角形的性質(zhì)定理和三角形內(nèi)角和定理的聯(lián)系,并引出推論2。
A組口答練習(xí)
B組討論后回答。
掌握等腰三角形性質(zhì)定理的應(yīng)用,訓(xùn)練學(xué)生的類比思維,讓學(xué)生獲得從問題中探索共同的屬性和規(guī)律的思維能力。
教學(xué)內(nèi)容
教師活動(dòng)
學(xué)生活動(dòng)
達(dá)標(biāo)練習(xí)二
A組:等腰三角形斜邊上的高把直角分成兩個(gè)角,求這兩個(gè)角的度數(shù)。
B組:已知:如圖,房屋的頂角 ∠BAC=100°。求頂架上∠B、∠C、
∠BAD、∠CAD的度數(shù)。
理論聯(lián)系實(shí)際,
充分體現(xiàn)數(shù)學(xué)解決實(shí)際問題的作用,培養(yǎng)學(xué)生的應(yīng)用意識(shí),提高數(shù)學(xué)修養(yǎng)。
A組口答
B組獨(dú)立解答.
加深理解定理及推論1,能初步靈活地運(yùn)用它們進(jìn)行計(jì)算和論證。
布置作業(yè) :1、看書:P1——P3
2、課本P5 想一想
教案設(shè)計(jì)說明
本節(jié)課是在學(xué)生掌握了一般三角形基礎(chǔ)知識(shí)和初步推論證明的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,擔(dān)負(fù)著訓(xùn)練學(xué)生會(huì)分析證明思路的任務(wù),等腰三角形兩底角相等的性質(zhì)是今后論證兩角相等的依據(jù)之一,等腰三角形底邊上的三條主要線段重合的性質(zhì)是今后論證兩條線段相等、兩個(gè)角相等及兩條直線垂直的重要依據(jù)。因此設(shè)計(jì)時(shí),我分別從幾個(gè)方面作了精心策劃:
1、創(chuàng)設(shè)豐富的舊知環(huán)境,有利于幫助學(xué)生找準(zhǔn)新舊知識(shí)的連接點(diǎn),喚起與形成新知相關(guān)的舊知,從而使學(xué)生的原認(rèn)知結(jié)構(gòu)對(duì)新知的學(xué)習(xí)具有某種“召喚力”。
2、提供可探索性的問題,合理的設(shè)計(jì)實(shí)驗(yàn)過程,創(chuàng)造出良好的問題情境,不斷地引導(dǎo)學(xué)生觀察、實(shí)驗(yàn)、思考、探索,使學(xué)生感到自己就象科學(xué)家那樣提出問題、分析問題、解決問題,去發(fā)現(xiàn)規(guī)律,證實(shí)結(jié)論。發(fā)揮學(xué)生學(xué)習(xí)的主觀能動(dòng)性,培養(yǎng)學(xué)生的探索能力、科學(xué)的研究方法、實(shí)事求是的態(tài)度。
3、在鞏固應(yīng)用時(shí),訓(xùn)練題組的設(shè)計(jì)具有階梯性,加強(qiáng)了變式訓(xùn)練,便于及時(shí)反饋。實(shí)際應(yīng)用充分體現(xiàn)了數(shù)學(xué)解決實(shí)際問題的作用,培養(yǎng)學(xué)生的應(yīng)用意識(shí),提高數(shù)學(xué)修養(yǎng)。
4、利用直觀教具及電化教學(xué)手段,創(chuàng)設(shè)了豐富的課堂教學(xué)環(huán)境,觸發(fā)學(xué)生求知心向的生成,自覺地努力調(diào)集思維和舊知紛紛指向新知,成為學(xué)習(xí)活動(dòng)的“催化劑”、“助推器”。
等腰三角形的性質(zhì)
等腰三角形的性質(zhì) 篇11
等腰三角形的性質(zhì)
幾何第二冊(cè)第三章,3.12第2——4頁
教學(xué)目標(biāo)
(1)知識(shí)目標(biāo):1、掌握等腰三角形的兩底角相等,底邊上的高、
中線及頂角平分線三線合一的性質(zhì),并能運(yùn)用
它們進(jìn)行有關(guān)的論證和計(jì)算。
2、理解等腰三角形和等邊三角形性質(zhì)定理之間
的聯(lián)系。
(2)能力目標(biāo):1、定理的引入培養(yǎng)學(xué)生對(duì)命題的抽象概括能力,
加強(qiáng)發(fā)散思維的訓(xùn)練。
2、定理的證明培養(yǎng)大膽創(chuàng)新、敢于求異、勇于
探索的精神和能力,形成良好的思維品質(zhì)。
3、定理的應(yīng)用,培養(yǎng)學(xué)生進(jìn)行獨(dú)立思考,提高獨(dú)
立解決問題的能力。
(3)情感目標(biāo):在教學(xué)過程 中,引導(dǎo)學(xué)生進(jìn)行規(guī)律的再發(fā)現(xiàn),激發(fā)
學(xué)生的審美情感,與現(xiàn)實(shí)生活有關(guān)的實(shí)際問題使
學(xué)生認(rèn)識(shí)到數(shù)學(xué)對(duì)于外部世界的完善與和諧,使
他們有效地獲取真知,發(fā)展理性。
教學(xué)重點(diǎn) 等腰三角形的性質(zhì)定理及其證明。
教學(xué)難點(diǎn) 用文字語言敘述的幾何命題的證明及輔助線的添加。
達(dá)標(biāo)進(jìn)程
教學(xué)內(nèi)容
教師活動(dòng)
學(xué)生活動(dòng)
一、 前置診斷,開辟道路
1、什么樣的三角形叫做等腰三角形?2、指出等腰三角形的腰、底邊、頂角、底角。
首先教師提問了解前置知識(shí)掌握情況。
動(dòng)腦思考、口答。
二、 構(gòu)設(shè)懸念,創(chuàng)設(shè)情境
1、一般三角形有哪些性質(zhì)?
2、等腰三角形除具有一般三角形的性質(zhì)外,還有那些特殊性質(zhì)?
把問題作為教學(xué)的出發(fā)點(diǎn),激發(fā)學(xué)生的學(xué)習(xí)興趣。
問題2給學(xué)生留下懸念。
三、 目標(biāo)導(dǎo)向,自然引入
本節(jié)課我們一起研究——等腰三角形的性質(zhì)。
板書課題
了解本節(jié)課的學(xué)習(xí)內(nèi)容。
四、 設(shè)問質(zhì)疑,探究嘗試
請(qǐng)同學(xué)們拿出準(zhǔn)備好的等腰三角形,與教師一起按照要求,把兩腰疊在一起。
[問題]通過觀察,你發(fā)現(xiàn)了什么結(jié)論?
[結(jié)論]等腰三角形的兩個(gè)底角相等。
板書學(xué)生發(fā)現(xiàn)的結(jié)論。
[問題]可由學(xué)生從多種途徑思考,縱橫聯(lián)想所學(xué)知識(shí)方法,為命題的證明打下基礎(chǔ)。
[辨疑]由觀察發(fā)現(xiàn)的命題不一定是真命題,需要證明,怎樣證明?
[問題]1、此命題的題設(shè)、結(jié)論分別是什么?
2、怎樣寫出已知、求證?
3、怎樣證明?
[電腦演示1]
[投影學(xué)生證明過程,并由其講述]
從而引出定理 等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫成“等邊對(duì)等角”)
通過電腦演示,引導(dǎo)學(xué)生全面觀察,聯(lián)想,突破引輔助線的難關(guān),并向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想。
引出學(xué)生探究心理,迅速集中注意力,使其帶著濃厚的興趣開始積極探索思考。
繼續(xù)觀察圖形
[問題]1、指出全等三角形中還有哪些
對(duì)應(yīng)邊、對(duì)應(yīng)角相等?
2、等腰三角形的頂角的平分線又有什么性質(zhì)?
設(shè)問、質(zhì)疑
小組討論,歸納總結(jié),培養(yǎng)學(xué)生概括數(shù)學(xué)材料的能力。
教學(xué)內(nèi)容
教師活動(dòng)
學(xué)生活動(dòng)
[辨疑]一般三角形是否具有這一性質(zhì)呢?
[電腦演示2]
從而引出推論1 等腰三角形頂角的平分線平分底邊,并且垂直于底邊.
“三線合一”性質(zhì) 等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。
[填空]根據(jù)等腰三角形性質(zhì)定理的推論,在△ABC中
(1)∵AB=AC,AD⊥BC,
∴∠_=∠_,_=_;
。2)∵AB=AC,AD是中線,
∴∠_=∠_,_⊥_;
。3)∵AB=AC,AD是角平分線,
∴_⊥_,_=_。
通過電腦演示,引出推論1,并引入[填空]、強(qiáng)調(diào)推論1的運(yùn)用方法。
電腦演示給學(xué)生對(duì)推掄1留下深刻印象,并通過[填空]了解推論1的運(yùn)用方法。
五、 變式訓(xùn)練,鞏固提高
達(dá)標(biāo)練習(xí)一
A組:根據(jù)等腰三角的形性質(zhì)定理
(1)等腰直角三角形的每一個(gè)銳角都等于多少度?
(2)若等腰三角形的頂角為40°,
則它的底角為多少度?
(3)若等腰三角形的一個(gè)底角為 40°,則它的頂角為多少度?
B組:根據(jù)等腰三角形的性質(zhì)定理
(1)若等腰三角形的一個(gè)內(nèi)角為 40°,則它的其余各角為多少度?
(2) 若等腰三角形的一個(gè)內(nèi)角為120°,則它的其余各角為多少度?
(3)等邊三角形的三個(gè)內(nèi)角有什么關(guān)系?各等于多少度?
從而引出推論2 等邊三角形的各角都相等,并且每一個(gè)角都等于60°.
題目設(shè)計(jì)遵循由易到難的原則,引導(dǎo)學(xué)生拾階而上。溝通等腰三角形的性質(zhì)定理和三角形內(nèi)角和定理的聯(lián)系,并引出推論2。
A組口答練習(xí)
B組討論后回答。
掌握等腰三角形性質(zhì)定理的應(yīng)用,訓(xùn)練學(xué)生的類比思維,讓學(xué)生獲得從問題中探索共同的屬性和規(guī)律的思維能力。
教學(xué)內(nèi)容
教師活動(dòng)
學(xué)生活動(dòng)
達(dá)標(biāo)練習(xí)二
A組:等腰三角形斜邊上的高把直角分成兩個(gè)角,求這兩個(gè)角的度數(shù)。
B組:已知:如圖,房屋的頂角 ∠BAC=100°。求頂架上∠B、∠C、
∠BAD、∠CAD的度數(shù)。
理論聯(lián)系實(shí)際,
充分體現(xiàn)數(shù)學(xué)解決實(shí)際問題的作用,培養(yǎng)學(xué)生的應(yīng)用意識(shí),提高數(shù)學(xué)修養(yǎng)。
A組口答
B組獨(dú)立解答.
加深理解定理及推論1,能初步靈活地運(yùn)用它們進(jìn)行計(jì)算和論證。
布置作業(yè) :1、看書:P1——P3
2、課本P5 想一想
教案設(shè)計(jì)說明
本節(jié)課是在學(xué)生掌握了一般三角形基礎(chǔ)知識(shí)和初步推論證明的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,擔(dān)負(fù)著訓(xùn)練學(xué)生會(huì)分析證明思路的任務(wù),等腰三角形兩底角相等的性質(zhì)是今后論證兩角相等的依據(jù)之一,等腰三角形底邊上的三條主要線段重合的性質(zhì)是今后論證兩條線段相等、兩個(gè)角相等及兩條直線垂直的重要依據(jù)。因此設(shè)計(jì)時(shí),我分別從幾個(gè)方面作了精心策劃:
1、創(chuàng)設(shè)豐富的舊知環(huán)境,有利于幫助學(xué)生找準(zhǔn)新舊知識(shí)的連接點(diǎn),喚起與形成新知相關(guān)的舊知,從而使學(xué)生的原認(rèn)知結(jié)構(gòu)對(duì)新知的學(xué)習(xí)具有某種“召喚力”。
2、提供可探索性的問題,合理的設(shè)計(jì)實(shí)驗(yàn)過程,創(chuàng)造出良好的問題情境,不斷地引導(dǎo)學(xué)生觀察、實(shí)驗(yàn)、思考、探索,使學(xué)生感到自己就象科學(xué)家那樣提出問題、分析問題、解決問題,去發(fā)現(xiàn)規(guī)律,證實(shí)結(jié)論。發(fā)揮學(xué)生學(xué)習(xí)的主觀能動(dòng)性,培養(yǎng)學(xué)生的探索能力、科學(xué)的研究方法、實(shí)事求是的態(tài)度。
3、在鞏固應(yīng)用時(shí),訓(xùn)練題組的設(shè)計(jì)具有階梯性,加強(qiáng)了變式訓(xùn)練,便于及時(shí)反饋。實(shí)際應(yīng)用充分體現(xiàn)了數(shù)學(xué)解決實(shí)際問題的作用,培養(yǎng)學(xué)生的應(yīng)用意識(shí),提高數(shù)學(xué)修養(yǎng)。
4、利用直觀教具及電化教學(xué)手段,創(chuàng)設(shè)了豐富的課堂教學(xué)環(huán)境,觸發(fā)學(xué)生求知心向的生成,自覺地努力調(diào)集思維和舊知紛紛指向新知,成為學(xué)習(xí)活動(dòng)的“催化劑”、“助推器”。
威海市經(jīng)濟(jì)技術(shù)開發(fā)區(qū)皇冠中學(xué) 叢燕燕
2000年4月
等腰三角形的性質(zhì)
教 案
威海市經(jīng)濟(jì)技術(shù)開發(fā)區(qū)皇冠中學(xué)
叢燕燕
二O O O年四月
------------------------------------------------------------
相關(guān)專題: 初中數(shù)學(xué)
專題信息:
九年級(jí)(上)第一章(證明二)單元測(cè)試卷1(2004-10-12 12:48:49)[1300]